LEA: A Learned Encoding Advisor for Column Stores

Lujing Cen Andreas Kipf
MIT CSAIL MIT CSAIL
Cambridge, MA, USA Cambridge, MA, USA
lujing@mit.edu kipf@mit.edu
ABSTRACT

Data warehouses organize data in a columnar format to enable
faster scans and better compression. Modern systems offer a va-
riety of column encodings that can reduce storage footprint and
improve query performance. Selecting a good encoding scheme for
a particular column is an optimization problem that depends on
the data, the query workload, and the underlying hardware.

We introduce Learned Encoding Advisor (LEA), a learned ap-
proach to column encoding selection. LEA is trained on synthetic
datasets with various distributions on the target system. Once
trained, LEA uses sample data and statistics (such as cardinality)
from the user’s database to predict the optimal column encodings.
LEA can optimize for encoded size, query performance, or a com-
bination of the two. Compared to the heuristic-based encoding
advisor of a commercial column store on TPC-H, LEA achieves 19%
lower query latency while using 26% less space.
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1 INTRODUCTION

Column stores offer different encodings, such as delta or dictionary,
as well as general-purpose compression schemes (e.g., ZSTD [1]).
The user specifies the encoding for each column or allows the
database to apply a set of default encodings based on the column
type. Notably, a few systems use heuristic-based approaches to
select column encodings. For example, Amazon Redshift [8] and
Vertica [10] select encodings by sampling contiguous rows from a
table. SingleStore supports automatic encoding selection for each
column segment, but it is not clear what heuristic is used [9].

In this paper, we introduce the Learned Encoding Advisor (LEA).
LEA addresses three limitations of the aforementioned approaches:
First, LEA not only optimizes for encoded size, but also considers
end-to-end scan performance on the target system, including I/O
and in-memory decompression. Second, LEA does not constrain
its optimization to finding a single encoding that works for the
entire column. Instead, it allows for an encoding per column and
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block, exploiting localized correlations in data. Third, LEA con-
siders both data statistics (e.g., cardinality, min/max) and sample
statistics during optimization. We show that only using sample
data to select the best encoding is insufficient for certain schemes.
For example, dictionary and frame-of-reference (FOR) encodings
depend on cardinality and domain size, respectively, neither of
which can be adequately captured by sampling. Finally, instead of
requiring re-tuning for different CPUs and storage devices, LEA
uses a two-part training process that allows it to quickly adapt itself
to the user’s underlying hardware.

We integrate LEA with a commercial column store and demon-
strate that it improves upon the built-in encoding advisor on two
workloads, even when a single encoding strategy is used for each
column. Specifically, LEA achieves 19% lower cold-cache query
latency on TPC-H while using 26% less space. We also compare
LEA against the optimal set of column encodings (brute-forced) and
show that LEA always stays within 10% of the optimal encoding,
regardless of whether we optimize for size or query latency. In its
current form, LEA assumes a uniform workload during training
and inference. In future work, we plan to consider the concrete
access patterns of a given workload to unlock its full potential.

Related Work. There is limited work in machine learning tech-
niques for choosing optimal encodings. A project known as shrynk
feeds statistics about a data frame into a classification model to
predict the best compression scheme [6]. The work, while specific
to pandas [4], demonstrates that it is possible to apply machine
learning in the context of encoding selection. However, shrynk
requires the optimization objective to be defined during training
and only supports selection on the granularity of an entire file.

Other approaches to improving database performance include
automated tuning, where different configuration parameters ex-
posed by the database are adjusted using heuristics or reinforcement
learning [11, 12]. There is also extensive work in column advisors
that automatically determine the best partitions, column clusters,
indexes, and materialized views [7, 13]. [7] tries to select the opti-
mal column encodings, but does so using fixed heuristics based on
the cardinality of the data and whether or not a column is sorted.
Additionally, a few systems perform operations directly on encoded
data by pushing down predicates and aggregates [3, 5].

2 LEARNED ENCODING ADVISOR

LEA works in two phases, a training phase and an inference phase.
In the training phase, synthetic data is used to pre-train LEA’s
internal models. LEA trains three models for each encoding type:
one model to predict the encoded size, and two models which work
together to predict the overall scan time for the column. The first
model, which is the most expensive to train, can be trained offline
on any hardware. The other two models capture details about the
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Figure 1: Predicting encoded size, in-memory scan speed, and from-storage scan speed for a single column slice. The size model
consumes slice statistics and the encoded sample size. The in-memory scan speed model consumes the predicted size and slice
statistics. The from-storage scan speed model consumes the predicted size and the predicted in-memory scan speed.

underlying hardware, and are thus trained in situ on the target
machine. In the inference phase, samples and statistics from the
user’s data are fed into those trained models.

Given a set of encodings and a specific objective, our goal is
to find the optimal encoding for every column and block. LEA al-
lows for any objective function. Currently, it optimizes for either
encoded size or from-storage scan speed (including in-memory de-
compression). In future work, we plan to investigate other potential
objectives, include a mix between size and latency, and consider
the impact of compression speed.

Training Procedure. We generate slices (a column in a data block)
of synthetic training data (more below), and extract from each slice
hand-crafted features that are (1) easy to compute and (2) that we
believe are highly relevant to encoding selection. For integral data
types, we collect the range, cardinality, and the first three moments
(mean, variance, and skewness) of the distance between adjacent
values within the slice. For string slices, we collect the cardinality
and mean string length. Three models are trained for each encoding
that predict the encoded size, in-memory scan speed, and from-
storage scan speed of a slice. In addition, we obtain the encoded size
of a contiguous 1% sample for each encoding. The sample encoded
size along with the shared slice statistics are used as model inputs.

Initially, we tried training LEA on several real datasets. However,
we found that doing so fails to provide a sufficient variety of training
inputs and thus does not generalize well to unseen data. Training
LEA on a large number of real datasets (at least a few hundred
columns in total) could mitigate that problem. However, we would
still need to transfer all of these datasets onto the target system to
obtain our measurements for the scan speed of each encoding.

Instead, we train LEA on data generated from synthetic distri-
butions. For integers, we use (1) skewed normal distribution with
randomly chosen mean and skewness, (2) discrete uniform distri-
bution with randomly chosen cardinality, and (3) runs of the same
value with randomly chosen run length. For strings, we choose the
mean length and cardinality of a slice and generate data based on
those parameters. A post-processing step randomly scales the data
for integers, performs sorting, and inserts null values. Cardinal-
ity, run length, and mean string length are selected from the log
uniform distribution to more effectively explore the input space.
Per data type (integral or string), LEA only needs to train on ~1000
slices each with 1 M values for size, ~250 slices for in-memory scan
speed, and ~5 slices for from-storage scan speed.

Inference Procedure. Figure 1 shows how LEA predicts encoded
size, in-memory scan speed, and from-storage scan speed for a given
encoding. For the encoded size and in-memory scan speed models,
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we use random forest regression; due to various corner cases (e.g.,
columns with very low cardinality), other regression techniques
are not a good choice for the amount of training data we provide to
the system. For strings longer than any in our training data, we use
linear regression since random forests cannot extrapolate. From-
storage scan speed uses linear regression to model the latency and
throughput of the underlying storage device.

The entire inference process works as follows: For each slice, we
obtain the shared slice statistics. Then, for each supported encoding,
we take a 1% contiguous sample of that slice (like during training)
and encode it to measure the sample encoded size. We feed both the
slice statistics and the sample encoded size into the corresponding
models for the encoding. Finally, after predicting the properties of
all encodings for a slice, we choose the encoding that performs best
according to the given objective (either size or latency).

3 EVALUATION

We evaluate LEA on top of a commercial column store (System C).
Experiments are performed on an 8-core 5d. 2x1arge AWS machine
with a network-attached General Purpose SSD (gp2) EBS device.
All from-storage experiments are with cold cache, i.e., we clear the
database and file system caches before each query. We report the
minimum latency from five runs.

Encoding Strategies. System C offers 13 different column encod-
ings. All slices of a column are encoded using the same encoding.
System C comes with two built-in approaches for automatic encod-
ing selection. The first approach, C-Default, uses a fixed mapping
between encoding and data type (e.g., string types always use run-
length encoding). The second approach, C-Heuristic, is a heuristic-
based encoding advisor that optimizes for encoded size (storage
footprint). C-Heuristic assumes that a lower storage footprint leads
to better query performance. We compare these two approaches
with two variants of LEA: one that optimizes for encoded size
(LEA-S) and one that optimizes for query latency (LEA-Q).

Workloads. We evaluate these approaches using two different
datasets. StackOverflow is a denormalized table consisting of 12.5 M
rows and 24 columns. We generate four queries that together cover
most columns and perform various operations including selection,
aggregation, and sorting. Specifically, Q1 aggregates on a string
column, Q2 aggregates and sorts on an intermediate numeric col-
umn, Q3 is an ungrouped aggregation, and Q4 is a string search in
multiple columns. The second workload operates on the full TPC-H
dataset with scale factor 10. We run all 22 TPC-H queries generated
using QGEN with default substitution parameters.



LEA: A Learned Encoding Advisor for Column Stores

C-Heuristic Encoded Size LEA-S Encoded Size LEA-Q Encoded Size

2.0
15
1.0
0.5

0.0
Columns

LEA-Q Query Latency

Columns

LEA-S Query Latency

Columns

20 C-Heuristic Query Latency

15

Ratio Over C-Default

1.0
0.5

0.0

Queries Queries Queries

Figure 2: Encoded size and query latency for StackOverflow.
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Figure 3: Encoded size and query latency for TPC-H.

Encoded Size and Query Latency. We integrate LEA with System
C and report encoded size and cold-cache query latency. Unfor-
tunately, System C caches uncompressed blocks in memory, mak-
ing warm cache experiments too complex for this work. Figure 2
shows the results on the StackOverflow workload. Each of the three
columns in the plot (C-Heuristic, LEA-S, and LEA-Q) shows the
improvement/degradation ratio over System C’s default encodings
(C-Default). The first row of plots shows encoded size and the sec-
ond row shows query latency. In terms of encoded size, all three
approaches improve upon C-Default. Both C-Heuristic and LEA-S
outperform C-Default on the 20 integral columns. However, only
LEA-S produces smaller encodings on the four remaining string
columns, while C-Heuristic does not. In terms of query latency,
LEA-Q improves upon the default encodings on all four queries,
while LEA-S and C-Heuristic both show significant regressions.

Hence, we conclude that the size objective of LEA-S and C-
Heuristic is not necessarily a good proxy for improved query per-
formance. While smaller columns are generally faster to load from
storage, these time savings can be outweighed by the high CPU
overhead that some of these encodings entail. Of course, this is hard-
ware dependent; loading lightly compressed data from our network-
attached disk (which has a maximum throughput of 250 MiB/s) is
faster than loading heavily compressed data and paying the higher
CPU cost for decompression. With even slower cloud storage, this
trade-oft might change. Traditional heuristics thus require re-tuning
for each hardware configuration. Unlike traditional heuristics, LEA
can adapt itself to the underlying hardware, the user’s data, and the
user’s objective, all at the same time [2].

Figure 3 shows the results for TPC-H. C-Heuristic improves upon
the default encodings in terms of encoded size for around half of the
columns, while LEA-S improves encoded size for almost all columns.
LEA-Q again shows a few regressions but also shows the strongest
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Figure 4: Comparing LEA to the optimal set of column en-
codings (per slice). We also compare to the Single Optimal
encoding (same encoding for all slices of a column).

improvements in terms of query latency. In fact, it only slightly
regresses on one of the 22 TPC-H queries while improving on the
remaining queries by up to 50%. The regression on TPC-H Query 21
can be explained as follows: A sequential scan is performed on the
same table three times, but only the first scan is from cold-cache.
System C is not able to cache all of the uncompressed blocks, so it
has to effectively perform two additional in-memory scans over the
encoded blocks. LEA could estimate the cost of this query, but it
would need to be provided with the column access patterns of this
specific query or workload when selecting encodings. Overall, LEA-
Q achieves 19% lower query latency while using 26% less space than
System C’s heuristic-based encoding selection for this workload.
Similar to the StackOverflow results, solely optimizing for size (C-
Heuristic and LEA-S) leads to query latency regressions on most
queries and only improves latency on a few queries.

Comparing Against Ground Truth. We now compare LEA’s en-
coding recommendations to the ground truth, i.e., the best possible
set of column encodings for a given objective (size or query la-
tency). In this experiment, we perform full column scans instead
of running specific queries to get a more complete picture. So far,
we were only able to choose one encoding per column (across all
blocks). However, real data may have localized correlations. Hence,
we now add an additional degree of freedom to allow for choosing
an encoding per column and block (i.e., per slice). Since System C
does not support slice-specific encodings, we use our own proto-
type database for this experiment. Our prototype supports delta,
dictionary, frame-of-reference (FOR), run-length encoding (RLE),
and ZSTD. Since our engine currently does not support joins, we
use a denormalized version of TPC-H at scale factor 1 with around
7 M rows. We brute force the optimal set of encodings (Optimal) for
all slices (given the corresponding objective, size or query latency).
We compare Optimal with LEA as well as one more baseline: Single
Optimal which brute forces the single best encoding for an entire
column (and is hence not slice-specific).

Figure 4 shows the results. Across all configurations (datasets,
data types, and objectives), LEA and Single Optimal are always
within 10% of Optimal. Using one encoding per column is not the
best in all cases because different blocks might contain different
data distributions (e.g., more duplicates). While such patterns can
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Figure 6: Prediction accuracy of LEA-S with an increasing
number of training slices on denormalized StackOverflow
and TPC-H. SMAPE is averaged over supported encodings.

be found in organic data, this effect is amplified by our use of
denormalized StackOverflow and TPC-H (i.e., popular foreign keys
are duplicated many times). Although LEA is not able to outperform
Single Optimal on these datasets, there is still value in being able
to choose one encoding per slice, as evidenced by the difference
between Single Optimal and Optimal.

Ablations. We now study the importance of individual model fea-
tures on prediction accuracy. We focus on integral columns and
encoded size as the objective in this experiment. We compare LEA
(with sample and slice statistics) with two baselines: Sample Only
which is LEA without slice statistics (such as min/max and cardi-
nality) and Statistics Only which is LEA without sampling. We use
symmetric mean absolute percentage error (SMAPE) to compare
predicted with actual sizes. As shown in Figure 5, LEA outperforms
both ablations across all encodings. Slice statistics are particularly
important for dictionary and FOR encodings. Dictionary encoding
depends on cardinality and FOR encoding depends on domain size;
however, both metrics are hard to estimate from a sample.

Training Convergence and Time. Figure 6 shows the prediction
accuracy of LEA-S with an increasing number of training slices.
Recall that each slice contains 1 M rows, of which we take a con-
tiguous 1% sample. We again use SMAPE to measure the difference
between the predicted and actual sizes. For both integral and string
types, LEA requires around 1,500 slices to converge. Notably, most
training is spent obtaining the labeled training data. With System
C, our approach requires around three hours to load the various
synthetic datasets with the different encodings and to collect the rel-
evant metrics (encoded size and scan speed). Training the random
forest models takes less than one minute.

Inference Time. Using LEA involves drawing slice and sample
statistics from the data and feeding them to our different models.
The most expensive step of the inference process is applying the dif-
ferent encodings to the sample. For TPC-H, LEA on System C takes
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ten minutes for the entire encoding selection process, including the
time it takes to load the data from all tables, gather statistics, and
evaluate the models. We expect that an optimized implementation
integrated with System C would be able to reduce the inference time
by an order of magnitude or more. In contrast, brute-forcing the
optimal set of encodings takes upwards of 30 minutes per column
when scan speed needs to be measured.

4 CONCLUSIONS

We have presented a learned approach to encoding selection (LEA).
LEA is a first step towards an instance-optimized data encoding sys-
tem that considers the given data, query workload, and hardware.
Trained with synthetic data and without workload knowledge, we
have shown that LEA outperforms the auto-encoding heuristic im-
plemented in a state-of-the-art commercial column store. In future
work, we plan to incorporate the concrete access patterns of a given
query workload into the optimization process.
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