
109

Kepler: Robust Learning for Faster ParametricQuery
Optimization
LYRIC DOSHI∗, Google, USA
VINCENT ZHUANG∗, Google, USA
GAURAV JAIN, Google, USA
RYAN MARCUS, University of Pennsylvania, USA

HAOYU HUANG, Google, USA
DENIZ ALTINBÜKEN, Google, USA
EUGENE BREVDO, Google, USA
CAMPBELL FRASER, Google, USA

Most existing parametric query optimization (PQO) techniques rely on traditional query optimizer cost models,

which are often inaccurate and result in suboptimal query performance. We propose Kepler, an end-to-end

learning-based approach to PQO that demonstrates significant speedups in query latency over a traditional

query optimizer. Central to our method is Row Count Evolution (RCE), a novel plan generation algorithm

based on perturbations in the sub-plan cardinality space. While previous approaches require accurate cost

models, we bypass this requirement by evaluating candidate plans via actual execution data and training an

ML model to predict the fastest plan given parameter binding values. Our models leverage recent advances

in neural network uncertainty in order to robustly predict faster plans while avoiding regressions in query

performance. Experimentally, we show that Kepler achieves significant improvements in query runtime on

multiple datasets on PostgreSQL.

CCS Concepts: • Information systems→ Query optimization.

Additional Key Words and Phrases: databases, query optimization, machine learning

ACM Reference Format:
Lyric Doshi, Vincent Zhuang, Gaurav Jain, Ryan Marcus, Haoyu Huang, Deniz Altınbüken, Eugene Brevdo,

and Campbell Fraser. 2023. Kepler: Robust Learning for Faster Parametric Query Optimization. Proc. ACM
Manag. Data 1, 1, Article 109 (May 2023), 25 pages. https://doi.org/10.1145/3588963

1 INTRODUCTION
Parametric query optimization (PQO) aims to optimize parameterized queries, i.e. queries that have
identical SQL structure and only differ in the value of bound parameters. Such parameterized queries

are ubiquitous in modern database usage and present a significant opportunity for improving query

performance because they are executed repeatedly.

∗
Equal contribution.

Authors’ addresses: Lyric Doshi, lyric@google.com, Google, Mountain View, CA, USA; Vincent Zhuang, vincentzhuang@

google.com, Google, Mountain View, CA, USA; Gaurav Jain, gaurav@gauravjain.org, Google, Mountain View, CA, USA;

Ryan Marcus, rcmarcus@seas.upenn.edu, University of Pennsylvania, Philadelphia, PA, USA; Haoyu Huang, haoyuhuang@

google.com, Google, Mountain View, CA, USA; Deniz Altınbüken, denizalti@google.com, Google, Mountain View, CA,

USA; Eugene Brevdo, ebrevdo@google.com, Google, Mountain View, CA, USA; Campbell Fraser, campbellf@google.com,

Google, Mountain View, CA, USA.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2023 Copyright held by the owner/author(s).

2836-6573/2023/5-ART109

https://doi.org/10.1145/3588963

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 109. Publication date: May 2023.

HTTPS://ORCID.ORG/0009-0002-1234-0283
HTTPS://ORCID.ORG/0009-0007-2931-3069
HTTPS://ORCID.ORG/0009-0006-9980-7737
HTTPS://ORCID.ORG/0000-0002-1279-1124
HTTPS://ORCID.ORG/0000-0002-0940-228X
HTTPS://ORCID.ORG/0000-0002-4558-2847
HTTPS://ORCID.ORG/0009-0005-7965-3534
HTTPS://ORCID.ORG/0009-0005-2035-4409
https://doi.org/10.1145/3588963
https://orcid.org/0009-0002-1234-0283
https://orcid.org/0009-0007-2931-3069
https://orcid.org/0009-0006-9980-7737
https://orcid.org/0000-0002-1279-1124
https://orcid.org/0000-0002-0940-228X
https://orcid.org/0000-0002-4558-2847
https://orcid.org/0009-0005-7965-3534
https://orcid.org/0009-0005-2035-4409
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3588963

109:2 Lyric Doshi et al.

Fig. 1. Kepler achieves an overall 2.41x speedup on Stack by 1. discovering be�er plans via RCE, 2. capturing
the majority of the speedup with SNGP models while minimizing regressions, and 3. having fast model
inference time.

However, PQO has primarily been studied from the perspective of reducing query planning time
by avoiding re-optimization when possible [7, 9, 13, 17, 18, 34]. Such approaches are implicitly
constrained by the performance of the system's query optimizer, and therefore inherit all of
the well-studied sub-optimalities of traditional query optimizers [22]. Thus, an ideal system for
parameterized queries should not only seek to minimize planning time via PQO, but also optimize
query execution performance via query optimization (QO).

A variety of approaches have attempted to improve query optimization by applying machine
learning [20, 25, 29, 38, 39]. Unfortunately, most learned query optimization techniques su�er from
at least four drawbacks: (1) they requireinference timeshigher than traditional methods [19, 24],
(2) they haveinconsistent performanceacross dataset sizes and distributions [19, 26, 31], and (3)
they often haveunclear query performance improvements[19]. Worse yet, many of these learned
systems lack (4)robustness: regressions in query performance are unacceptable in most production
scenarios [12]. This poses an especially large challenge for learning-based approaches, since they
typically cannot guarantee that all of their predictions result in improved execution time [35].

We propose that restricting the query optimization problem to the parameterized query setting
poses a more tractable learning problem and hence can be more robustly solved. To this end, we
present Kepler (K-planEvolution for Parametric Query Optimization:Learned,Empirical,Robust),
an end-to-end learning-based approach for parameterized queries. Building on prior work in PQO
[34], Kepler leverages a novel plan generation strategy, a training query execution phase, and a
robust neural network model design. Combined, we show that these techniques provide signi�cant
improvements in both planning time and query execution performance, satisfying both the PQO
and QO objectives. Best of all, Kepler's use of robust neural network techniques drastically reduces
the frequency and magnitude of performance regressions. Figure 1 highlights how each of Kepler's
components contribute to a 2.41x geometric mean speedup across the entire Stack benchmark [25].

Kepler follows a decoupled plan generation and learning-based plan prediction architecture
similar to the approach of [34] with three key di�erences. First, Kepler provides the key insight
that designing better candidate plan generation algorithms can lead to substantially faster plans
than the built-in optimizer's. We propose Row Count Evolution (RCE), a method that e�ciently
generates candidate plans by perturbing the optimizer's cardinality estimates. RCE only requires a
simple interface to any standard cost-based optimizer, making it compatible with most database
systems.

Second, Kepler leverages actual query execution data to build a training dataset for best-plan
prediction, avoiding the well-studied mismatch between cost models and execution latency [22].

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 109. Publication date: May 2023.

Kepler: Robust Learning for Faster Parametric �ery Optimization 109:3

While Kepler's collection of execution data may be costly if the parameterized query is run infre-
quently, we argue that the additional execution data in our setting is justi�ed by (1) the scale of
parameterized queries in production and (2) the query execution speedups a�orded by RCE.

Third, Kepler uses robust neural network prediction techniques to decrease tail latency and
reduce query regressions (i.e. worse performance than the existing query optimizer). Speci�cally,
Kepler uses Spectral-normalized Neural Gaussian Processes (SNGPs) [23] to accurately quantify
how con�dent it is about a prediction, and falls back to the database's query optimizer when it is
uncertain.

Our contributions.

� We identify a novel and practical formulation of query optimization for parameterized query
templates in whichspeedupsagainst a classical query optimizer can be robustly achieved.

� We propose a novel candidate plan generation algorithm, Row Count Evolution (RCE), that
produces signi�cant speedup compared to classical query optimizers on real-world and
synthetic datasets.

� We demonstrate that incorporating robust ML techniques allows models to capture large
portions of the speedups while greatly reducing the risk of regressions.

� We demonstrate that our model inference costs are negligible via an end-to-end PostgreSQL
integration for the query path.

� We open-source both our system implementation for PostgreSQL1 as well as our query
execution datasets, which we believe is the �rst dataset tailored towards parameterized query
optimization. The datasets collectively represent� 14.2 CPU years of query execution time.
They serve as a benchmark for further work on best-plan prediction as well as simulating
more e�cient techniques for training data collection.

2 RELATED WORK

Parametric query optimization. PQO has been extensively studied in a variety of works [7, 9,
13, 17, 18, 34]. The goal of the standard PQO formulation is to reduce the amount of times the query
optimizer is invoked while minimizing the corresponding regression in query latency [7, 13, 34].
Although Kepler also focuses on parametric queries, its primary objective is closer to that of
standard query optimization, which seeks to improve query latencies. Kepler also simultaneously
improves on the PQO objective by leveraging fast-inference ML models.

Prior PQO approaches typically make simplifying assumptions such as heavily relying on the
optimizer cost model or using base table selectivities as input features [13, 34]. This may be feasible
for some advanced commercial systems; however, this over-reliance on the existing optimizer is
particularly dangerous given the well-studied de�ciencies of optimizers such as PostgreSQL [22].

Our approach follows a similar structure as [34], which also decouples the populateCache
(candidate generation) and getPlan stages (ML-based prediction). However, since they focus on
the standard PQO objective of attempting to match the existing optimizer, they require using a
bandit algorithm to reduce their training data cost. By contrast, the primary objectives of Kepler
are query performance and robustness, leading to a lower emphasis on training query e�ciency.

Several popular database systems have implemented PQO features, including Oracle Adaptive
Cursor Sharing, Aurora Managed Plans, and SQL Server Parameter Sensitivity Plan optimization [1�
3]. These features all heavily rely on their cost models (based on traditional statistics and heuristics),
and do not utilize machine learning models.

1https://github.com/google/kepler

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 109. Publication date: May 2023.

109:4 Lyric Doshi et al.

Query plan generation.Several prior works suggest methods for candidate generation, which we
divide into four main categories.

(1) Default optimizer plans. The simplest method combines the optimizer's selected plan for
each query instance. This approach is frequently found in PQO algorithms since they seek
to cache the optimizer's plans [34]. This strategy is also employed in [30] to estimate the
empirical suboptimality of existing query optimizers. The quality of the resulting candidate
plan set is predicated upon the optimizer's ability to either generate optimal plans for each
query instance or a su�cient variety of good plans across the workload to bene�t from plan
sharing. However, we empirically observed that the optimizer fails to do so on real-world
datasets. (Table 10b).

(2) Cost-based plan pruning. populateCache algorithm [34] extends the default optimizer
candidate generation method with cost-based -set identi�cation to prune the candidate set
to size . However, this pruning method may mistakenly prune good plans if the correlation
between the cost estimates and actual execution times are poor.

(3) Optimizer con�guration parameters. Query optimizers typically expose a variety of
con�guration parameters that can be used to alter their query planning behavior. In particular,
PostgreSQL has con�guration parameters that allow one to disable entire classes of join
and scan operators from being used in query plans. Bao selectively applies subsets of these
parameters in order to generate new query plans [25]. Although simple, disabling operator
types is a heavy-handed and indirect approach to generating new plans.

(4) Exact cardinalities. Exact cardinality query optimization (ECQO) attempts to construct the
optimal plan by computing the plan induced by the exact cardinality values of all possible
sub-plans [10]. However, for su�ciently complex queries, evaluating these exponentially-
many sub-plans is prohibitively slow even with optimizations [32]. The selected plans are
also not always the fastest, as observed by [30].

In summary, these methods are all unsatisfactory for a variety of reasons: failure to generate
faster plans (1, 2, 4), ine�ectively exploring the plan space (3), or are computationally intractable
(4).

Machine learning for query optimization.A wide range of techniques apply ML on QO, most no-
tably for predicting cardinality estimates (CE) [20, 38, 39]. Recent work show cardinality estimation
may be brittle in practice, and that even small Q-errors can lead to noticeably worse plans [22, 35].
In general, these work do not measure the actual end-to-end execution latency of selected plans
after integrating their models into an optimizer [24].

Several approaches have demonstrated improved query performance, but typically do not consider
the issue of robustness. Neo [26] and Bao [25] leverage tree convolutional neural networks to
adaptively optimize plans using reinforcement learning and contextual bandits respectively. These
online algorithms o�er no guarantees on stability or regression avoidance, and hence cannot reliably
be deployed in production. Similarly, techniques applying deep reinforcement learning to QO have
not demonstrated consistently better performance and su�er from robustness issues [21, 28, 37].
For example, Figure 9 in [37] indicates a signi�cant amount of regressions both at train and test
time.

3 OVERVIEW

In this section, we describe our problem setting (Section 3.1), give an overview of our approach
(Section 3.2), and further discuss speci�c design choices that are made in Kepler (Section 3.3).

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 109. Publication date: May 2023.

Kepler: Robust Learning for Faster Parametric �ery Optimization 109:5

3.1 Problem Se�ing

As in prior work [34], we consider parameterized queries that are repeatedly invoked with di�erent
parameter bindings. Such queries are speci�ed by a template& with < parameterized predicates2

G0• ” ” ” • G< � 1 of varying data types. We let@denote a speci�c query instance, i.e.& with a �xed
set of parameter binding values. A query plan? associated with a template& speci�es how to
execute any query instance@� &. A sub-plan queryof & is & restricted to only a subset of its
tables [14], and its output cardinality is referred to as itssub-plan cardinality. We assume a �xed
database system with a built-in query optimizer, and denote the default plan?default ¹@º to be the
plan selected by the query optimizer for@. Finally, a workload, � W consists of a set of query
instancesf@0• ” ” ” •@=� 1g for a single template&, whereW denotes the space of all possible query
instances.

3.2 Kepler Overview

Our approach at a high level follows that of [34]: we consider a single, isolated query template&,
and decouple the problems of generating a set of possible plans and deciding which plan to use for
each query instance. More formally, these problems can be described as:

(1) Candidate generation. Generate a candidate set of: plansf?0• ” ” ” • ?: � 1g for &, out of the
exponentially-large set of all possible plansP (corresponding topopulateCachein [34]).

(2) Best-plan prediction. Learn a mapping" : W ! %that minimizes some objective, e.g.
some measure of execution latency over the workload (corresponding togetPlan in [34]).

Unlike [34], who attempt to match the performance of the built-in optimizer, our goal is to improve
upon the built-in optimizer as much as possible. To achieve this, Kepler includes a sophisticated
candidate generation algorithm, described in Section 4, that empirically generates better plans than
the built-in optimizer. The a�orded speedups allow Kepler to avoid relying on potentially-brittle
online learning approaches (e.g. contextual bandits) during the training data collection phase.

Objective.We �rst de�ne several key metrics and terms in our problem setting. For a given
query instance, we denote the optimal plan over some plan set%as?%

opt = min?2%�G42)8<4¹?•@º,
where�G42)8<4refers to the actual execution time. We de�ne?�

opt ¹@º as the optimal plan over all
possible plans, i.e. when%= P. Typically, the optimal plan refers to?�

opt for candidate generation
and?%

opt for modeling. We also refer to near-optimal plans as plans that have similar execution
time to ?%

opt or ?�
opt .

For some �xed candidate set%, we de�ne the (oracle) speedup ratio relative to the default plan
as:

(opt ¹%•, º =

Í
@2, �G42)8<4¹?default •@º
Í

@2, �G42)8<4¹?%
opt•@º

(1)

This quantity is the factor by which we can improve the total execution time of the workload
if we had oracle access to the optimal plan in%for each query instance. We note that this ratio
corresponds exactly with the de�nition of execution cost sub-optimality in [34]; the re-naming to
speedup emphasizes the di�erences in our system objectives. Since we can union%with the set of
all default plans over, , this speedup ratio is always lower bounded by 1.

Similarly, for some model" : W ! %, we de�ne its model speedup as:

(model¹, º =

Í
@2, �G42)8<4¹?default •@º

Í
@2, �G42)8<4¹?model•@º

(2)

2The parameters do not necessarily have to be in predicates, e.g. they may appear in a LIMIT clause. However, our
experiments only include the parameterized predicate case.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 109. Publication date: May 2023.

109:6 Lyric Doshi et al.

Fig. 2. Kepler architecture.

This quantity corresponds to how much faster the model is at executing a workload than the
default optimizer. Although(model is by de�nition upper bounded by(opt , it is not necessarily
lower bounded by 1, i.e. if the model selects plans worse than the default plan.

An auxiliary objective of Kepler is reducing workload tail latency. Several work have identi�ed
that database optimizers may perform signi�cantly worse in the tail of the query latency distribution,
which poses a signi�cant obstacle for use cases that require a more uniform runtime [25].

Kepler architecture.Figure 2 shows the architecture of Kepler, consisting of a Kepler trainer and
Kepler client. The trainer ingests query instances from the query logs produced by production
DBMSs and aggregates them into query templates. For each query template&8, the Kepler trainer
aims to �nd the near-optimal plans for all its query instances@9. It uses Row Count Evolution
(RCE) to generate candidate plans?: and executes the queries with these plans to collect execution
statistics. To minimize impact on production DBMSs, the trainer may optionally request a production
DBMS to spawn ephemeral instances to execute these queries. The Kepler trainer trains an ML
model to predict the best plan for@9 based on these execution statistics and deploys the trained
models into the production DBMSs.

A Kepler client maintains a mapping from a query template to an ML model. When a production
DBMS receives a query instance@, the client �rst checks if an ML model is available for@. If
available, it performs model inference to predict the best plan hints and provides the hints to the
optimizer only if the associated con�dence score is higher than a threshold. Otherwise, it falls back
to the built-in optimizer to produce a plan.

Changing environments and workloads.In our current implementation, Kepler assumes a �xed
system state, including database con�guration, optimizer implementation, and data distribution.
If any of these aspects changes relatively slowly or infrequently, Kepler can periodically collect
new execution data and retrain purely on data from the new system state. We posit that in the
majority of production parameterized query use cases, (1) the database is recon�gured infrequently,
and (2) the data distribution drifts slowly, e.g. in scenarios in which a relatively small amount
of similarly-distributed data is added each day. Additionally, Kepler is designed to be robust to
dynamic workloads in which query parameter binding values change by detecting when inputs are
out of its training distribution (see Section 7.4).

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 109. Publication date: May 2023.

Kepler: Robust Learning for Faster Parametric �ery Optimization 109:7

Fig. 3. Predicted vs. exact cardinalities on instances of Stack q12_2. Dashed y=x line is ideal (i.e. actual =
estimated).

Limitations.The target usage of Kepler is for parameterized queries that are executed frequently
enough to justify the training data collection cost. As discussed in Section 8, the exact training
data collection regime in this paper serves the dual purposes of de�nitively demonstrating the
speedups available and enabling further research in e�ciency. We anticipate a �nal production
system will use an iteration of this research with leaner training data collection. The cost-bene�t
analysis of using Kepler is situation-dependent; ultimately the user must weigh the potential query
performance gains against the cost. If ephemeral instances are used for training data collection,
Kepler assumes they are representative of production query performance.

3.3 Kepler Design Choices

In this section, we further discuss the speci�c design choices made to ensure that Kepler can be
reliably deployed with minimal production overhead.

Using actual execution latencies.Since the objective of Kepler is to reduce actual end-to-end query
latencies, it necessitates executing queries on a real database to provide ground-truth signal. To
minimize the training collection time and avoid load on the production system, the DBMS may
spawn ephemeral instances to speed up and isolate the training execution process.

Limiting reliance on cost models.By collecting actual execution latencies, Kepler eschews explicitly
relying on optimizer cost estimates for determining the quality of a plan. Figure 3 shows the
estimated vs. exact cardinalities of all joins on a sample of query instances from Stack [25]. In
particular, 64% of points have estimated cardinality = 1, likely due to the independence assumption
of the PostgreSQL optimizer.

Falling back to the built-in optimizer.Kepler avoids regressions by falling back to the existing
query optimizer when it is not con�dent in identifying the optimal plan. Given the low overhead of
model inference, the overall Kepler inference cost is nearly always lower than that of Opt-Always.
For cases where planning time is a concern due to high fallback frequency, one can incorporate an
additional model designed to predict a safe plan without re-invoking the optimizer.

Independence of query templates.Kepler handles query templates independently, i.e. each query
template will generate its own candidate plans, collect its own training data, and train a model
speci�c to that template. Though potentially more expensive than a procedure that generalizes
over multiple query templates, this design has the advantages of 1) providing a more tractable

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 109. Publication date: May 2023.

109:8 Lyric Doshi et al.

Table 1. RCE hyperparameters.

Notation De�nition
� Number of generations.
1 Exponent base for row count perturbation.
< Exponent range for row count perturbation.
(Number of plans sampled from the previous generation.
Number of perturbation for each candidate plan.

ML problem, and 2) isolating each query from regressions caused by changes pertaining to other
queries as models iterate over time and new query templates are on-boarded. Leveraging shared
information between query templates while not increasing the risk of regressions is an interesting
direction for future work.

4 ROW COUNT EVOLUTION

The goal of the candidate generation stage is to construct a set of plans%such that it contains a
near-optimal plan for every query instance@in the workload distributionW . Additionally,%should
be su�ciently small such that it is feasible to execute each plan for training dataset collection.
Balancing these two competing objectives is the main challenge for any candidate generation
algorithm.

In this work, we only consider generating fully-speci�ed plans, i.e. the join order and every
join/scan method are de�ned. Alternatively, a candidate generation algorithm could specify a subset
of the plan decisions and allow the query optimizer to determine the remainder.

Workload candidate generation.Given an algorithm� for generating a candidate plan set over a
single query instance@, we de�ne the corresponding plan set over a workload, as the union of
the per-instance plan sets� ¹, º :=

Ð
@2, � ¹@º (see lines 1-7, Algorithm 1). We also de�neplan

sharingto describe the case where?%
opt ¹@º is generated from some other query instance@0 (i.e.

?%
opt ¹@º 8 � ¹@º, ?%

opt ¹@º 2 � ¹@0º).

Our approach.We propose Row Count Evolution (RCE)3, a computationally-e�cient algorithm
that generates new plans by randomly perturbing the optimizer's cardinality estimates. RCE is
predicated on the idea that cardinality misestimates are the primary underlying reason for optimizer
suboptimality. RCE exploits the fact that our candidate generation stage only needs to generate a
set of plans that contains a (near-)optimal plan instead of directly identifying a single performant
plan. Like Bao [25], RCE leverages the built-in query optimizer to generate candidate plans, but
does so in a more �ne-grained and e�cient way.

We instantiate the idea of applying random perturbations as an evolutionary-style algorithm,
described in Algorithm 1. RCE maintains a sequence of generations of plans, with the initial
generation consisting solely of the query optimizer's plan. To construct subsequent generations,
RCE �rst uniformly samples parent plans from the previous generation. For each of these base
plans, RCE perturbs the join cardinalities ofonly the sub-plans that appear in the parent planby
multiplicative factors sampled from an exponentially-spaced range (lines 27-39). By repeating this
process multiple times and feeding in the resulting perturbations into the query optimizer, RCE
generates a set of children plans (lines 15-21). Out of these, only unseen plans (i.e. those that did
not appear in any prior generation) are kept for the next generation (lines 18-19).

3The name "Row Count" is inspired by the PostgreSQL extension pg_hint_plan's row count hints, which we use to modify
the PostgreSQL optimizer's cardinality estimates.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 109. Publication date: May 2023.

Kepler: Robust Learning for Faster Parametric �ery Optimization 109:9

Algorithm 1 Row Count Evolution.

1: function WorkloadCandidateGeneration (workload,)
2: % fg
3: for query instance@2 , do
4: % %[RowCountEvolution¹@º
5: return %
6:

7: function RowCountEvolution (query instance@)
8: ?0 = the base plan for@
9: � 0 = f¹ ?0•fg•fB! 08 sub-plansBgºg

10: for generations6 = 1•2• ” ” ” � do
11: Sample up to(base plans� 6 uniformly from � 6� 1
12: � 6 fg
13: for (base plan?, row count mapA) 2 � 6 do
14: for 8= 1•2• ” ” ” • #do
15: A0 SamplePerturbations(?, A)
16: ?0 GetOptimizerPlan(A0)
17: if ?0! = ? then
18: � 6.add((?0, A0))

19: return � 0 [� 1 [” ” ”[� �

20:

21: function SamplePerturbations (plan?, row count mapA)
22: for sub-planB2 ? do
23: F ?.getEstimatedCardinality(B)
24: 4; � min¹log1 ¹F º•<º
25: 4D 4; ¸ 2<
26: Sample5 uniformly from »14; • ” ” ” •14D¼
27: A»B¼ F � 5
28: return A

Fig. 4. An example RCE process.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 109. Publication date: May 2023.

109:10 Lyric Doshi et al.

Example.Figure 4 shows an example of RCE generating candidate plans for a query instance with
two generations. The base plan joins the result of� Z � and� Z � with estimatedj� Z � j = 40,
j� Z � j = 17. RCE �rst constructs a set of candidate row counts for each sub-plan by perturbing
their cardinalities by multiplicative factors. These candidate row counts for� Z � and� Z � are
»4•40•400¼and »1•17•170¼, respectively, using a base of 10 and a range of 1. RCE then uniformly
samples new join cardinalities from these sets; one sample of 400 and 17 in�uences the optimizer
to produce a new plan Plan-1 in generation 11. It repeats the same process N times to produce
� 1 plans in generation 1. Next, RCE samples(from a deduplicated set of plans from generation
1 2 and randomly perturbs the row counts on each sampled plan# times to generate� 2 plans in
generation 23.

RCE as exact cardinality matching.One interpretation of RCE is that it e�ciently builds a covering
set of exact-cardinality plans. The RCE-generated candidate set contains plans generated from a
diverse range of perturbed sub-plan cardinalities. If there are su�ciently many perturbations, likely
at least one will be reasonably close to the exact cardinalities for any particular query instance and
their respective induced plans will also likely be similar.

Multiplicative perturbations.Applying multiplicative perturbations is well-motivated by the
standard metric of Q-error in cardinality estimation. RCE further uses an exponentially-spaced
perturbation set in order to have a similar support as the optimizer's Q-error distribution.

Perturbing only relevant sub-plans.Instead of perturbing all2= � 1 sub-plans (for a query joining
= tables), RCE only perturbs the cardinalities of the= � 1 sub-plans that actually appear in the
sampled query plans. This signi�cantly increases the e�ciency of RCE with only a small loss of
generality: since the set of perturbations is inherited between generations, a misestimated sub-plan
cardinality will only never be perturbed if its cardinality is signi�cantly overestimated by the query
optimizer. However, this is an unlikely scenario since query optimizers tend to underestimate
sub-plan cardinalities due to the independence assumption.

This re-optimization of only the sub-plan cardinalities that appear in the optimizer plan bears a
strong resemblance to the re-optimization procedure in [36], which iteratively re-optimizes using
sampling-based cardinality estimates. The key di�erences in our setting are (1) we do not have to
return a single plan, and (2) we require a fast procedure since we repeat it for each query instance,
motivating the use of perturbations over sampling.

RCE as local search.RCE e�ectively explores the plan space via a random walk in the low-
dimensional subspace of sub-plan cardinalities, initialized at the optimizer's cardinality estimates.
This formulation implicitly leverages the fact that while these initial estimates are typically incorrect,
they are still more informative than random estimates.

RCE hyperparameters.Our implementation of RCE includes a variety of hyperparameters that
allow one to �exibly trade o� the number of generated plans against the potential total speedup
(Table 1).

� Width and depth of the perturbation tree. Increasing the number of generations�
increases the number of plans, making it more likely a good plan is found. However, plans
in later generations are perturbed further from the original plan, and may have a lower
likelihood of being relevant. To ensure constant-time processing for each generation, we
sample (up to) a �xed number(of base plans in each generation, and perturb each one#
times.

� Perturbation values. The exponent base1 and range< limits the magnitude of a single
perturbation. We also introduce a sub-plan perturbation limit that controls the number of

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 109. Publication date: May 2023.

Kepler: Robust Learning for Faster Parametric �ery Optimization 109:11

times a speci�c sub-plan can be perturbed, e�ectively controlling the total perturbation range
of any given sub-plan.

� Direct limits on number of plans. We implement limits on the number of plans that can
be generated from a single parameter and in total. Once the limit is reached, the evolutionary
candidate generation process is terminated and only default plans are kept for remaining
parameters. The total plans limit is a soft limit since the �nal evolutionary iteration may
produce up to the single-parameter limit and the remaining parameters may contribute new
default plans.

5 TRAINING DATA COLLECTION

After generating candidate plan set%, we execute each plan over a training workload to generate a
dataset of execution latencies for supervised best-plan prediction. The training workload may be
provided by the user or captured in a DBMS query log [34]. Rather than executing all candidate
plans for each query instance, we use adaptive timeouts and construct near-optimal plan covers to
prune suboptimal plans.

Execution mechanics.We force the optimizer to produce a candidate plan by providing all join/scan
methods and the join order via hints. We parallelize the execution of query instances and their
candidate plans in multiple databases. We simulate a warm bu�er cache scenario by executing each
plan multiple times and taking the minimum as the estimated latency [22]. This repeated execution
strategy also reduces the potential noise in our execution time measurements; though we observed
the amount of noise to be inconsequential in our experimental setup. We leave a full analysis of
query execution time under di�erent caching, concurrency, and resource availability settings to
future work.

Adaptive timeouts and plan execution reordering.We use a timeout policy to minimize wasted
resources on executing sub-optimal candidate plans. The timeout policy adapts from [37] with
two main modi�cations. First, we always execute the default plan �rst and adaptively reorder the
remaining plans to maximize the impact of the timeout's progressive tightening on a per query-
instance basis. We execute plans in ascending order of their historical execution latencies across
query instances as a simple heuristic for tightening the timeout as quickly as possible. Second, we
do not apply the tightened timeout for the �rst iteration of each plan in order to ensure that each
plan simulates a warm-cache scenario.

Online plan cover pruning.We also use an online plan pruning technique to eliminate plans based
on actual execution time. Speci�cally, we initially execute all plans for the �rst# query instances
of a query template, then use a Set Cover formulation to prune down to a minimalplan coverset
for the remaining query instances. The pruned set becomes our: candidate plans for the query
template, i.e. our models only attempt to predict from those plans.

We consider a plan to be near-optimal for a query instance@if its execution time is within a
1¸ n factor of the fastest time for@we have seen so far. Each plan has an associated set of query
instances for which it is near-optimal. Theplan coveris the smallest set of plans such that each
query instance has a near-optimal plan in the set. We construct the plan cover using the standard
greedy approximation for Set Cover, which iteratively picks the plan that is near-optimal for the
most remaining query instances. We additionally relax the problem to require that only1 � Xof all
query instances be covered, allowing us to trade o� the plan cover size and the achievable speedup.

Tail latency reordering.For many query templates, the distribution of default execution latencies
is heavy-tailed. Parameters in the tail tend to be more sub-optimal, and therefore have an outsized
impact on the total speedup. To ensure the plan cover computation includes these parameters, we

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 109. Publication date: May 2023.

109:12 Lyric Doshi et al.

evaluate these query instances �rst. This reordering produces a 7-8x reduction in total execution
time and number of plans over the entire Stack dataset.

6 ROBUST BEST-PLAN PREDICTION

After collecting a full training dataset of actual execution latencies over our candidate plan set, we
use supervised ML to predict the best plan for any query instance. Kepler trains one model for each
query template with the objective to maximize workload speedup while minimizing regressions.
Kepler also falls back to the optimizer's plan when its predicted con�dence is low. Section 7 shows
that the inference time of our model is negligible compared to the typical query planning time of a
classical optimizer.

6.1 Features

Given a template& with < parameters, Kepler uses solely the< parameter values as input features.
The supported types include numerics (�oat/int), strings, and dates/timestamps. We apply standard
preprocessing techniques to each type: embeddings for strings/low-dimensional integer features,
normalization to# ¹0•1º for numerics, and numeric conversion for date/time features.

We do not convert the parameter values to their respective base table selectivities as in [34]
for the following reasons. First, selectivity is inherently a lossy representation and may obscure
information when two distinct values have the same selectivity. Second, selectivity is inferior when
the optimizer's cardinality estimation is sub-optimal, see Figure 3.

String columns and vocabulary selection.For each string-valued column, we construct a �xed-size
vocabulary in order to limit model size. String features are one-hot encoded via a lookup table,
with buckets for out-of-vocabulary values. An embedding layer is then applied on this one-hot
encoding, creating a learnable embedding for each value in the vocabulary.

We choose the vocabulary as the top-: values ordered by the total possible improvement of all
query instances with that value. We de�ne themax marginal improvementstrategy as selecting the
top-: column valuesEin column8under the following objective:

< ¹E•8º =
Õ

@2, •G 8=E

�G42)8<4¹?default •@º � �G42)8<4¹?%
opt•@º (3)

Our evaluation shows that this strategy is e�ective. For columns with signi�cantly more distinct
values, one may factorize embeddings over subcolumns [38].

6.2 Training Objectives

Kepler models maximize the model speedup de�ned in Equation 2 while minimizing the number of
regressions. This objective is not directly di�erentiable, so we discuss various surrogate learning
objectives.

Multi-label classi�cation.We model best-plan prediction as amulti-labelclassi�cation problem
in which each near-optimal plan has a positive label (as opposed to just the optimal plan) [33]. The
multi-label objective also provides a richer supervised signal, improving the quality of the learned
intermediate representations. We use the single-label transformation of multi-label classi�cation
loss by training the near-optimal probability of each candidate plan with binary cross-entropy loss.

Although our models only predict plans in the plan cover, which may not necessarily contain
every query instances' default plan, our de�nition of near-optimality does exploit the availability
of default plan execution data during training. We de�ne a plan to benear-optimalif its estimated
latency improvement is within a1¸ g factor of the optimal improvement latency. Namely, we say a
plan? is near-optimal if¹�3 � �?º¹1 ¸ gº � ¹ �3 � �>º, whereg ¡ 0, �3 = �G42)8<4¹?default •@º, �? =

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 109. Publication date: May 2023.

Kepler: Robust Learning for Faster Parametric �ery Optimization 109:13

�G42)8<4¹?•@º, and�> = min?2%�G42)8<4¹?•@º. Computing near-optimality requires execution
times for all query instances for all plans.

Prior work formulate best-plan prediction as a regression [6, 27, 34] and multi-class classi�cation
problem [34]. Both formulations are unsatisfactory for a variety of reasons. Regression across a
signi�cant range can be unstable, a problem that is exacerbated by our timeout procedure, which
obscures the true latency of suboptimal plans. Regression attempts a more challenging problem
with �ner granularity than required, imposing unnecessary constraints and objectives on the
training. We only need to predict the identity of the optimal plan rather than its execution time.
Inversions and gross over-estimates of non-optimal plans are acceptable to us but will weigh heavily
in regression loss. Meanwhile, classi�cation objectives that predict a single optimal plan perform
poorly in scenarios when multiple plans can be near-optimal and empirical execution latencies
can be subject to noise. For example, consider a problem where plans?1• ?2 execution latencies'
are both drawn from� ¸ # ¹0•1º for some large� . Then a multi-class classi�er will have equal
predicted likelihood for?1 and?2 and thus have low con�dence, when in actuality being con�dent
in ?1 and/or?2 is desirable.

Example-dependent loss.Di�erent query instances may have disproportionate impact on the over-
all objective Equation 2. We leverage the standard sample-weighting approach example-dependent
cross entropy [8, 16] to prioritize those with the largest improvement delta. For plans worse than
the default plan, we upweight them by a factor� . For all near-optimal plans, we apply a soft
weighting based on their empirical execution improvement, i.e.1 ¸ � log¹�3 � �?º, where� and�
are both tunable hyperparameters.

6.3 Models

We use simple feedforward neural networks as our base models. For inference e�ciency, we consider
a neural network with one output head per plan on top of a shared representation, which improves
inference speed and model size over approaches that have separate models for each plan [34].

We train our neural network models with standard minibatch SGD. In a real-world setting,
the model's hyperparameters can be tuned via simple search techniques or more sophisticated
algorithms by partitioning the training data into a train and validation set.

Uncertainty.Kepler models incorporate calibrated predictions and uncertainty estimates to avoid
predicting signi�cantly suboptimal plans. Two state-of-the-art approaches for incorporating uncer-
tainty into neural networks are ensembling and Spectral-normalized Neural Gaussian Processes
(SNGPs) [23]. The former trains" distinct models simultaneously and estimates the uncertainty
from their joint outputs. The latter applies spectral normalization to all layers, providing a bi-
Lipschitz guarantee on all intermediate representations, and uses a Gaussian process output layer
to e�ciently estimate the uncertainty. Since ensembling increases the training and inference cost
by a linear factor" , Kepler uses the SNGP approach due to its lower overhead.

7 EXPERIMENTS

Our evaluation of Kepler seeks to demonstrate that it robustly achieves state-of-the-art execution
latency speedups on parameterized query workloads. We summarize our main results as follows:

� An end-to-end implementation of Kepler on PostgreSQL substantially outperforms the built-
in optimizer and Bao. Both RCE and ML models play large roles in achieving this speedup.
(Section 7.2)

� RCE discovers signi�cantly better plans than existing candidate generation baselines. We
also observe that RCE plans are frequently superior to exact-cardinality plans. (Section 7.3)

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 109. Publication date: May 2023.

109:14 Lyric Doshi et al.

� Using SNGP models is crucial to capturing speedups generated by RCE while minimizing
query regressions. (Section 7.4).

� We release a dataset consisting of� 14.2 years of query executions as a benchmark for future
research in modeling approaches (Section 7.5).

Objectives.To evaluate our methods, we use both RCE speedup(opt ¹'�� º (shortened as('��)
and model speedup(model, de�ned in Equations 1 and 2 respectively. We note that(model = ? � ('�� ,
where0 � ? � 1 corresponds to the proportion of the speedup the model captures. Since the
model may predict worse plans than the built-in optimizer, we also measure the query regression
frequency%reg , de�ned as the proportion of test query instances the model does at least 10% worse
than the default optimizer on. The primary metrics for each of our components are:

(1) End-to-end performance: (model

(2) Candidate generation performance: ('��

(3) Model performance: ?, %reg

Kepler aims to maximize(modelby maximizing? and('�� , while minimizng%reg . We also report
the 99th-percentile tail latency speedup, which may be relevant in applied scenarios. We de�ne this
as%method

99 ¹, º = ?99¹ f �G42)8<4¹?default •@º8@2, gº
?99¹ f �G42)8<4¹?method•@º8@2, gº , where?99¹� º denotes the 99th percentile highest

value in a collection� .

7.1 Setup

Datasets and query extraction.We use two synthetic benchmarks: TPC-H (uniform and skewed
with Zipf factor = 1, 10 GB [4]), and Stack, a database consisting of real-world StackExchange
data [25]. TPC-H consists of 22 parameterized queries. We use an augmented version of Stack with
87 parameterized queries: 42 from the original benchmark and 45 additional manually-written
query templates.

All experiments were run using PostgreSQL 13.5 on Google Cloud Platform (GCP) n1-highmem-16
instances with 16 CPU cores, 108 GB of RAM, and 2 TB of SSD. Following [22], we set shared_bu�ers
to 75 GB, e�ective_cache_size to 80 GB, and work_mem to 4 GB to ensure that the entire dataset �ts
in memory. For TPC-H, we use the indexes de�ned in BenchBase [11]. For Stack, we add indexes
on all primary keys, foreign keys, and columns that appear in a predicate of any query.

Query instance generation.We follow the o�cial TPC-H speci�cation [5] to generate parameter
values of each query template. For Stack, we synthetically generate parameter values so that every
query instance returns nonempty results. This is accomplished by uniformly sampling rows from
the result set of a derived query that selects column values for which parameterized predicates
would produce at least one value. Range predicates are constructed by �rst sampling a single value
in the manner, then sampling lower/upper bounds around this value.

Training query execution.For each query instance and plan hints, we execute the resulting plan
three times to simulate a warm-cache scenario, and take the minimum latency as the ground truth.
For slow queries, we executed each up to 8 times in parallel on the same machine, and observed
negligible di�erences with the serial execution setting. We leave a full analysis of di�erent execution
scenarios to future work.

RCE hyperparameters.Unless stated otherwise, we use the same values for all RCE hyperpa-
rameters in all of our experiments, demonstrating its e�cacy even when untuned for speci�c
benchmarks. We set the number of generations� to 3, the exponent base1 to 10, the exponent
range< to 2, the number of perturbations per plan# to 20, and the number of samples extracted

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 109. Publication date: May 2023.

Kepler: Robust Learning for Faster Parametric �ery Optimization 109:15

(model % of queries
>1.2 64.4%
>2x 32.2%
>10x 14.9%
>20x 4.6%

(a) Summary of PostgreSQL
Kepler speedups on Stack.

(b) Actual end-to-end vs predicted la-
tencies (ms).

(c) Histogram of model inference to
PostgreSQL planning time ratios.

Fig. 5. PostgreSQL integration evaluation.

from each generation(to 20. For each query template, we run RCE on the �rst 50000 query
instances for Stack, and all query instances for TPC-H.

Model details.All of our experiments use a �xed base neural network with three layers of
64 hidden units each. We use Adam with learning rate 3e-4, ReLU activation functions, and 10-
dimensional string embeddings. For SNGP models, we additionally apply spectral normalization
to all dense layers, and replace the output dense layer with a random Fourier feature Gaussian
Process with 128 random features. For all models, we fall back to the default plan if the predicted
con�dence is less than 0.9. For all queries, we use a 80/20 train/test split, and report results (speedups,
regressions) on the test workload. We did not attempt to tune our models or perform model selection,
although it is straightforward to do so by reserving a validation set from the training dataset.

7.2 Kepler Improves �ery Execution Latency

Fig. 6. ('�� and%'��
99 on Stack by query, sorted by('��

End-to-end performance.We integrate Kepler into the PostgreSQL query optimizer to demonstrate
that it delivers large speedups in a real deployment. Our implementation loads Tensor�ow Lite
models on the database server for fast CPU model inference and uses thepg_hint_plan extension
to force speci�c plans via hints. Providing the query id as a comment with the SQL query text from
any PostgresSQL client connection triggers Kepler query plan prediction.

We executed a sample of 1000 evaluation set query instances per query on the integrated Kepler
PostgresSQL system. Table 5a summarizes the speedups of Kepler over Stack, demonstrating that
our PostgreSQL implementation achieves nontrivial speedups on the majority of queries, with over
2x speedup over the entire workload for 32.2% of queries. These speedups indicate that Kepler is
able to bypass inaccuracies PostgreSQL's cardinality estimation and cost model via RCE.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 109. Publication date: May 2023.

109:16 Lyric Doshi et al.

(a) TPC-H. (b) TPC-H skewed (z=1).

Fig. 7. ('�� and%'��
99 on TPC-H by query, sorted by('�� .

(a) Stack, model speedup ratio histogram. (b) Stack, p99 model speedup ratio histogram.

Fig. 8. Model results on Stack.

Figure 5b con�rms that the Kepler deployment achieves near-identical speedups to those expected
based on the pre-collected execution dataset. This is because the use of lightweight ML models and
planning hints incur low planning-time overhead. Figure 5c shows the distribution of the ratio of
model inference times to PostgreSQL planning time for all queries in Stack. The model inference
time is mostly under 5% of PostgreSQL planning time and at most 30%.

Our total speedup results over entire workloads are quite signi�cant since our workloads � query
instances sampled uniformly from the space of non-empty query instances � are not designed to
adversarially challenge the optimizer. Next, we summarize the contributions from the two key
components: (1) RCE to uncover the potential speedups and (2) the ML models to capture speedups.
Finally, we compare the results to Bao as a baseline.

RCE speedups.We illustrate the e�cacy of RCE by showing that it achieves large speedups on
both Stack and TPC-H. Figure 6 shows the per-template('�� and%'��

99 , with RCE achieving over
2x speedup on 31/87 queries and over 1.2x speedup on 78/87 queries.

Similarly, RCE improves 6/22 queries on TPC-H uniform (Figure 7a) and 9/22 queries on TPC-
H skewed (Figure 7b). In particular, RCE �nds larger speedups on TPC-H skewed due to the
non-uniformity in its data distribution.

ML models predict fastest plans and avoid regressions.Next, we show that our ML models are able
to robustly capture the speedup produced by RCE, i.e. they maximize? while minimizing %reg . In
Figures 8a and 8b, we plot what proportion of('�� and%'��

99 on Stack we respectively capture
per query. These distributions show that our models can reliably predict near-optimal plans: our
models capture over 80% of('�� on over 80% of Stack queries. In Figure 9, we plot the distribution

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 109. Publication date: May 2023.

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	3.1 Problem Setting
	3.2 Kepler Overview
	3.3 Kepler Design Choices

	4 Row Count Evolution
	5 Training Data Collection
	6 Robust Best-Plan Prediction
	6.1 Features
	6.2 Training Objectives
	6.3 Models

	7 Experiments
	7.1 Setup
	7.2 Kepler Improves Query Execution Latency
	7.3 Analyzing RCE
	7.4 ML Models
	7.5 Dataset Contribution

	8 Conclusion and Future Work
	References

