
LA-UR-12-23206
Approved for public release; distribution is unlimited.

Title: MCMini: Monte Carlo on GPGPU

Author(s): Marcus, Ryan C.

Intended for: Web

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National
Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.
By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.
Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the
U.S. Departmentof Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish;
as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Los Alamos National Laboratory
LA-UR-12-23206 UNCLASSIFIED

MCMini: Monte Carlo on GPGPU

Ryan Marcus
rmarcus@lanl.gov

Summer 2012

Abstract

MCMini is a proof of concept that demonstrates the possibility for
Monte Carlo neutron transport using OpenCL with a focus on perfor-
mance. This implementation, written in C, shows that tracing particles
and calculating reactions on a 3D mesh can be done in a highly scalable
fashion. These results demonstrate a potential path forward for MCNP
or other Monte Carlo codes.

1 Introduction

As a co-design application for exascale research and development[2], MCMini
requires a sample implementation. Work from 2011[1] demonstrated a slower
version of MCMini implemented in Python that could run using CUDA, OpenCL,
OpenMP, MPI, and could also run in serial (without parallelism). This version of
MCMini is focused on performance, and is thus written in C.

In order to create performance-capable code, MCMini only supports one set
of parallel technologies: OpenMP, MPI, and OpenCL. Considerations for choosing
these technologies are described in the next section.

2 Potential Exascale Technologies

2.1 A diverse playing field

Accelerator and co-processor technologies evaluated for MCMini include:

• GPGPUs utilizing NVIDIA’s CUDA: NVIDIA’s GPU language

• GPGPUs utilizing Khronos’ OpenCL: An open standard for highly parallel
computing

• The Intel MIC co-processor: One of Intel’s HPC technologies

Each item was found to have various advantages and disadvantages which
are documented in the following sections.

1

Los Alamos National Laboratory
LA-UR-12-23206 UNCLASSIFIED

2.1.1 NVIDIA CUDA

CUDA is the original GPGPU language/API backed by NVIDIA. It features the
ability to run a subset of C on the GPU. It is proprietary software which runs
exclusively on NVIDIA devices, such as the Tesla.

2.1.2 Khronos OpenCL

OpenCL, like CUDA, features the ability to run a subset of C on the GPU. Unlike
CUDA, OpenCL code can run on more than one platform, including NVIDIA GPUs
as well as most AMD and Intel CPUs. It is an open standard backed by Apple
and maintained by the Khronos Group.

It should be noted that Intel plans to add OpenCL support to their Intel
MIC.

2.1.3 Intel MIC

Intel MIC is a new technology from Intel which is still under heavy develop-
ment. The Intel MIC is a card containing a number of X86 processors that are
similar to Intel’s Xeon. The Intel MIC attempts to provide a highly-parallel
environment that can execute Fortran and C code, and realistically, any code
that can compile to its slightly modified X86/X86 64 instruction set.

While running current Fortran code seems like a very attractive option, the
nature of the Intel MIC architecture may not allow it to attain the same level
of performance as GPU devices. The X86 instruction set is very heavy, which
increases power requirements. The memory architecture of the Intel MIC is
identical to that of a standard CPU, which means developers will not be able
to take advantage of faster, non-global memory. Running the same Fortran or
C code may stifle transitions to more suitable parallel algorithms. OpenMP codes
were designed to run using four to eight tasks, not fifty. MPI’s memory overhead
will probably decrease performance gains significantly [6].

2.2 Selection Criteria

2.2.1 Performance

All three technologies have shown very good performance under a large number
of tests, and while different tests place different technologies ahead of each
other, there does not seem to be a substantial difference between the optimal
performance of each technology, especially between CUDA and OpenCL. The Intel
MIC is still in very early development, but benchmark results are promising.

Some early (2010) benchmarks showed OpenCL code running 16% to 67%
slower than CUDA code[4]. However, more recent benchmarks (2012) from Oakridge
National Lab’s SHOC (Scalable Heterogeneous Computing Benchmark Suite)
have shown that OpenCL and CUDA performance have nearly equalized[5].

2

Los Alamos National Laboratory
LA-UR-12-23206 UNCLASSIFIED

2.2.2 Hardware agnostic code

The “write-once, run-anywhere“ paradigm has been an important goal of some
programming languages for a long time. Forming a language that is expressive
enough (as well as a compiler that is smart enough) to map high-level concepts
to a multitude of different devices is a difficult challenge.

Hardware-specific code, in the long term, is perhaps an even bigger challenge.
If one is not lucky enough to have a single target device, maintaining code for
many different platforms can be time consuming and costly.

The ever-evolving landscape of HPC and especially of exascale technologies
amplifies this concern. Writing code for a platform represents a commitment
to that platform, and since the platforms of exascale appear to be in constant
flux, committing to a certain platform could be troublesome.

Therefore, writing code that can be used on a multitude of platforms provides
a greater degree of security than platform-dependent code, even if there is a
chance that the multi-platform code becomes obsolete. Because OpenCL code
can presently run on CPUs, GPUs, and eventually the Intel MIC, it appears
to be the best option in terms of hardware agnostic tools. OpenCL can even be
extended to operate on entire clusters[3].

It should be noted that while the Intel MIC may appear to be hardware
agnostic because code could be ran on CPUs as well as the Intel MIC, code
compiled using the special instruction set of the Intel MIC could not be ran on
any kind of GPU.

2.2.3 Open standard

Using an open standard is important to keep codes independent of vendors. If
something were to happen to NVIDIA, CUDA code would likely become useless
as the last generation of hardware produced by NVIDIA became deprecated.

Having an open standard also increases hardware agnosticism. When any
vendor is allowed to produce a device conforming to an open standard, more
than one vendor is likely to produce capable hardware.

2.2.4 Ease of use

Compared to the difficulties of creating parallel algorithms and writing efficient
multi-threaded code, all platforms are fairly usable.

Toolsets for all three platforms are also well-developed. NVIDIA’s NSight,
while running only on Windows, provides debugging and profiling support.
AMD’s OpenCL implementation can be debugged using GDB and profiled using
OpenCL’s standard profiling tools. The Intel MIC is compatible with the Intel
and GNU toolchains.

Ease of use also depends on community support. Being able to search the
Internet for an answer to a question can substantially increase developer pro-
ductivity. While CUDA certainly has the largest user base at the moment, OpenCL
is gaining traction. A community base for Intel’s Intel MIC has yet to appear.

3

Los Alamos National Laboratory
LA-UR-12-23206 UNCLASSIFIED

2.3 Selection

Because of the importance of an open standard and the convenience that comes
with code portability, OpenCL was selected for developing MCMini.

It should be noted that the selection of OpenCL as a platform says nothing
about the optimal physical hardware. Selecting OpenCL as an HPC platform
does not mean one is forced to purchase AMD GPUs. Because OpenCL is hard-
ware agnostic, using it as a platform to write high-performance Monte-Carlo
codes allows those codes to be ran on whatever hardware is optimal at the time.
Another benefit of buying OpenCL compatible devices is that one gains access
to two different platforms. For example, if one were to purchase Intel MICs,
the Intel MICs could be used to run current codes until those codes have been
ported to OpenCL, providing both an immediate benefit and a stepping stone to
GPU based acceleration.

In order to support multiple devices, and to accelerate certain sections of
code that are not computed on accelerator devices, OpenMP is used.

For clustering support (to reach multiple machines), MPI is used.

3 MCMini

3.1 Description

MCMini is a Monte Carlo mini-app designed as a performance-capable proof of
concept for Monte Carlo neutron transport on GPGPU devices. The performance-
sensitive nature of the code made the C language a natural choice.

MCMini traces particles through a mesh (described in the MCNP-compatible
LNK3DNT format[7]) and calculates scatter, fission, and absorption reactions
within cells containing mixed materials. MCMini traces any daughter particles
down to a user-specified weight cutoff or predefined number of generations.

Compatibility between MCNP and MCMini is limited but functional. MCMini
can read the LNK3DNT geometry description that MCNP utilizes. Many of the
input decks for MCMini came from the DAWWG testing suite of MCNP.

MCMini is capable of scaling over multiple OpenCL devices, including CPUs
and GPUs. MCMini can also scale over multiple nodes containing OpenCL de-
vices through MPI.

3.2 Design

MCMini’s algorithms and implementation were designed by Larry Cox and Ryan
Marcus at the Los Alamos National Laboratory during the summer of 2011 and
2012. Previous work about vectorized Monte Carlo were influential[8].

A high-level description of the algorithms used can be found in the docu-
ment ”Developing a Monte Carlo mini-App for Exascale Co-Design,” LA-XX-
12-XXX. Implementation details (including many tricks and algorithm opti-
mizations) can be found in the documentation accompanying the source code.

4

Los Alamos National Laboratory
LA-UR-12-23206 UNCLASSIFIED

The physics involved in MCMini are modular, but the default implementa-
tion includes only simple Newtonian mechanics. No relativistic calculations or
compensations are made, and the neutron cross-section data used was fabricated
to create analytically-verifiable results.

The Newtonian physics used are cost-similar to the actual physics needed for
accurate results, so performance benchmarks of MCMini are very relevant, and
give a good preview at the potential for a full Monte Carlo neutron transport
code running on GPUs.

3.3 Performance

MCMini’s particle trace algorithm was designed to produce identical results
to MCNP, and MCMini’s attenuation algorithm, given a cross-section, is cost-
similar to MCNP.

MCMini is capable of tracing a large number of particles through a very
large mesh in a relatively small amount of time. The following table lists a
few performance samples from MCMini, each one calculating fourth generation
daughter particles.

Nodes GPUs Mesh cells Particles Time (m:s)
1 2 10003 105 0:50
2 4 20003 105 1:06
4 8 30003 105 1:51
8 16 100003 105 6:00

Table 1: MCMini times to trace particles through a large mesh

In addition to these high-level benchmarks, other considerations for HPC
computation include CPU/GPU speed comparisons, multi-GPU scaling, multi-
node scaling, and hardware comparisons. These are below.

3.3.1 CPU vs GPU Scaling

Because OpenCL code can run on both a GPU and a CPU, it makes sense to
compare performance between the two.

The following benchmark was conducted on an AMD Cypress device and an
AMD Opteron(tm) Processor 6168 CPU. The problem ran was a 600 x 600
x 600 mesh containing a cone.

At a high number of particles, the GPU is over twice as fast as the CPU.
Both memory and speed affect this benchmark. Because the GPU has a

much smaller amount of memory, a larger geometry may lead to substantial slow-
downs because memory would have to be swapped between the host the GPU.
None of the runs in this benchmark involved any swapping with host/system
memory.

5

Los Alamos National Laboratory
LA-UR-12-23206 UNCLASSIFIED

Particles CPU Time (s) GPU Time (s)
500 10.603 8.627
1000 11.466 10.355
2000 23.408 13.320
4000 43.818 19.091
6000 61.978 23.175
8000 73.161 27.706

Table 2: CPU v GPU times

Figure 1:
CPU vs GPU Times

6

Los Alamos National Laboratory
LA-UR-12-23206 UNCLASSIFIED

3.3.2 Multi-GPU Scaling

The OpenCL API allows one to run code on multiple OpenCL devices at the
same time. MCMini can utilize multiple devices by dividing up work based on
processor speed and memory capacity, doing all the partial calculations, and
then reducing the results.

The following benchmark was conducted on two AMD Cypress devices. The
problem ran was a 600 x 600 x 600 mesh containing a cone.

Particles 1 GPU Time (s) 2 GPU Time (s)
500 8.627 12.135
1000 10.355 12.72
2000 13.32 15.024
4000 19.091 17.921
6000 23.175 20.346
8000 27.706 23.763
12000 56.102 29.146

Table 3: 1 GPU vs 2 GPU

Figure 2:
Multi-GPU Times

As the number of particles grows, the two-GPU setup becomes nearly twice
as fast as the single-GPU setup. This demonstrates very good linear scaling.

Since two devices are involved in the two-GPU setting, a much larger number
of particles could potentially be traced, as much more memory is available.
Every test in this benchmark, including the single GPU setup, did not require
swapping with host/system memory.

7

Los Alamos National Laboratory
LA-UR-12-23206 UNCLASSIFIED

3.3.3 Multi-node Scaling

Using MPI, MCMini can run code over multiple nodes as well as multiple devices.
MCMini divides up work to each node, then each node divides up work to each
device. Each node reduces its data, and then the master node reduces all the
other node’s data.

The following benchmark was conducted on nodes with two AMD Cypress
devices each. The problem ran was a 600 x 600 x 600 mesh containing a cone.
OpenMPI was used for node-to-node communication on LANL’s Darwin cluster.

Particles 1 Node 2 Nodes 4 Nodes
500 12.135 14.232 15.932
1000 12.72 14.455 16.851
2000 15.024 15.062 17.051
4000 17.921 16.982 18.998
6000 20.346 17.573 19.583
8000 23.763 19.149 20.899
12000 29.146 22.158 21.856
24000 38.184 30.553 27.366
48000 62.118 45.021 32.182
80000 148.235 93.054 53.157
100000 362.185 244.36 128.326

Table 4: 1 Node vs 2 Nodes vs 4 Nodes

Figure 3:
Multi-Node Times

MCMini appears to scale well, especially as the number of particles increases.
Adding multiple nodes can clearly benefit large problems. There is no constraint
that the number of nodes must be a power of two or an even number.

8

Los Alamos National Laboratory
LA-UR-12-23206 UNCLASSIFIED

3.3.4 Hardware Scaling

Because OpenCL code can run on many different types of devices, it makes sense
to compare AMD hardware to NVIDIA hardware. An identical same codebase
is used on both vendor’s devices.

The following benchmark was conducted on nodes with two AMD Cypress
devices each, and two NVIDIA Tesla C2070 devices each. The problem ran was
a 600 x 600 x 600 mesh containing a cone.

Particles 1 Cypress 2 Cypress 1 Tesla 2 Tesla
500 8.627 12.135 9.576 9.955
1000 10.355 12.72 10.444 10.953
2000 13.32 15.024 13.086 12.468
4000 19.091 17.921 18.279 15.339
6000 23.175 20.346 22.718 17.019
8000 27.706 23.763 26.139 20.798
12000 56.102 29.146 57.22 24.24

Table 5: Cypress vs Tesla

Figure 4:
Cypress/Tesla Times

It should be noted that the AMD Cypress device was designed as a consumer-
level video card, and the NVIDIA Tesla C2070 was designed as a compute de-
vice. It should also be noted that none of these tests exceeded the 1 GB memory
capacity of the AMD Cypress device, so the full potential of the NVIDIA Tesla
C2070 was not utilized.

The scaling and performance of both devices are similar, with the two-
NVIDIA Tesla C2070 setup slightly out-performing the two-AMD Cypress setup.

9

Los Alamos National Laboratory
LA-UR-12-23206 UNCLASSIFIED

3.4 MCMini / MCNP Comparison

In order to show that MCMini demonstrates the possibility of Monte-Carlo
neutron transport on GPUs, results from MCMini need to, at a minimum, come
close to those produced by MCNP.

3.4.1 Neutron flux calculations

At best, neutron flux calculations performed on identical geometries (mostly
from the MCNP DAWWG testing suite) with MCNP can be called “slightly com-
parable“ to MCMini, but this was the goal.

MCMini’s results are similarly scaling to MCNP. As MCNP’s answer in-
creases, MCMini’s answer increases. While MCMini’s results are rarely within
the margin of error given by MCNP, the scaling factor between two problems
ran in both MCMini and MCNP is approximately the same.

3.4.2 Time comparison

Any time comparison between MCMini and MCNP is inherently unfair because
MCNP performs far more calculations than MCMini. However, geometries that
take a hours to trace in MCNP, can be fully traced in MCMini in minutes or
seconds.

4 Parallel Algorithms

The development of a performance-sensitive code like MCMini required several
parallel algorithms, some of which are described here.

4.1 Random number generator

An important aspect of any Monte Carlo code is a good random number gener-
ator. In parallel setups, each thread needs to be able to access it’s own stream
of random numbers at a very low cost.

4.1.1 Linear random number generators

Many GPU experts describe linear random number generators as insufficient for
GPU-based tasks and prescribe several other, more complex methods[9]. The
primary reason for the perceived inadequacy of linear random number generators
is the limited period of 231. To get around this issue, MCNP uses a 64-bit linear
random number generator that is very well suited to neutron transport[10].
Many other linear random number generators are also provided.

Double precision calculations on GPUs have been historically slow, nor-
mally cutting down performance by over 50%. Although both AMD[11] and
NVIDIA[12] are releasing cards with over a teraflop of double-precision power,
single precision still remains significantly faster.

10

Los Alamos National Laboratory
LA-UR-12-23206 UNCLASSIFIED

Using MCMini with a double-precision random number generator does bring
down performance substantially.

One trick used to substantially less the impact of the double-precision per-
formance hit was to generate double-precision random numbers using an int2,
an OpenCL vector type, and some bitwise tricks. The number is then mapped
to an unsigned 32-bit integer.

A better solution was to intelligently utilize the limited period of a 32-bit
generator. A Monte Carlo simulation only loses precision when the random
number generator wraps around and a number is used twice for the same pur-
pose. For example, consider a random sequence an. It is bad if a2 gets used to
determine two particle’s initial X positions within a geometry because particles
may not be sampled in an adequately random fashion. However, if a2 gets used
to determine the X position of a particle, and to calculate the energy deposited
due to absorption by a different particle, there is not a problem.

One other solutions included in MCMini was to switch to a different linear
random number generator after one had been exhausted.

4.1.2 Skip-ahead function

One necessity when using a linear random number generator on a GPU is a
fast skip-ahead function. If each thread in a kernel needs to calculate all the
random numbers leading up to that thread’s starting point, performance will
take a significant hit.

Because skipping ahead in a random number sequence is something that
every thread is going to need to do at initialization whenever a thread requires
a random number, it is important to have a very well optimized skip-ahead
function.

An implementation of such a skip-ahead function relies heavily on bitwise
operations, which are very efficient on GPUs[10]. Potential OpenCL code usable
for a 32-bit generator is below. It was translated directly from the open-source
MCNP random number generator. Replace %MULT%, %ADD%, and %MASK% with
their appropriate values from the linear random number generator that is being
used.

void skipAhead(int n, int* lastVal) {
// assuming that n > 0
int gen = 1, g = %MULT%, inc = 0, c = %ADD%;
int nskip = n;
int gp, rn;

nskip &= %MASK%;
while (nskip > 0) {

if ((nskip >> 1) << 1 != nskip) {
gen = (gen*g) & %MASK%;
inc = (inc*g) & %MASK%;
inc = (inc + c) & %MASK%;

11

Los Alamos National Laboratory
LA-UR-12-23206 UNCLASSIFIED

}

gp = (g+1) & %MASK%;
g = (g*g) & %MASK%;
c = (gp*c) & %MASK%;
nskip >>= 1;

}

rn = (gen*(*lastVal)) & %MASK%;
rn = (rn + inc) & %MASK%;
*lastVal = rn;

}

4.2 Buffered Iteration Pattern

As described in previous works[8], it is often necessary to have a thread perform
a task for a greater number of iterations than it’s neighboring thread. For
example, when tracing particles through a mesh, some particles will exit before
others.

When doing something like tracing particles through a mesh, where each step
results in some data (what cell the particles are in) and where some threads may
finish before others, developers are left with two options:

• create a multi-dimensional array big enough to hold the maximum possible
amount of data

• create a one-dimensional array big enough to hold a single iteration’s worth
of data, and copy that piece of data back to the host after each iteration

While option two may seem like it would use a lot of bandwidth, it can
implemented using a double buffer, as described by the below pseudo-code.
This algorithm reduces the space requirement of any such iterative algorithm
from O(n2) to O(n).

d = the data we are processing
b1 = an array big enough to hold the results of 1 step of d
b2 = another array big enough to hold the results of 1 step of d
*b = a pointer to an array, either b1 or b2

ll = a linked list to hold each step

allocate b1 on device
allocate b2 on device

b = &b1 // make b point to b1

12

Los Alamos National Laboratory
LA-UR-12-23206 UNCLASSIFIED

while (iteration is required) {
do_calculation_kernel(d, *b);
t = copy *b from device to host
ll.append(t)
b = (b == &b1 ? b = &b2 : b = &b1);
wait for any copy using *b

}

As long as the the do calculation kernel step requires less time than a
copy, very little performance should be lost. If the do calculation kernel
step does require more time than a copy, more buffers can be added, but this
increases the space cost (although the space cost will still be far below O(n2)).

If memory utilization is an issue, one could remove the double buffer and
replace it with a single buffer, copy that buffer to the host each time, scan it
for completed items, and then copy back a smaller array of items that have not
been completed. This would greatly decrease performance.

Obviously, this pattern is only useful if one can read data from the device
while also executing a kernel on the device.

4.3 Device Context Switching

When computing without an accelerator or co-processor, one either has enough
memory, or one does not. When computing with an external device that has its
own memory, memory management can become much more complicated.

For example, imagine a device with 8 units of memory, along with the fol-
lowing kernels and data. Assume that in order for the program to complete, all
kernels must execute in order.

Kernel Requires
1 a, b, c
2 b, c, d
3 a, b
4 c

Table 6: Example kernel requisites

Data Size
a 4
b 2
c 2
d 1

Table 7: Example data sizes

When executing these kernels, one would have to switch between various

13

Los Alamos National Laboratory
LA-UR-12-23206 UNCLASSIFIED

contexts. When going from kernel 1 to kernel 2, one would need to free a from
the device memory in order to fit d.

One might imagine a simple solution to this problem to be switching to the
minimal context for each kernel. However, this might not be optimal, as it
would require using additional bandwidth. Consider the following two runs of
this program, one in which a minimal context is always preserved, and another
where it is not.

Kernel Minimum Data Bandwidth Non-minimum Data Bandwidth
1 copy(a, b, c) a, b, c 8 copy(a, b, c) a, b, c 8
2 free(a) copy(d) b, c, d 1 free(a) copy(d) b, c, d 1
3 free(d, c) copy(a) a, b 4 free(d) copy(a) a, b, c 4
4 free(a) copy(c) b, c 2 free(a) b, c 0

Table 8: Minimal context and non-minimal context

Clearly, a smarter context manager is needed. The context manager would
need to be able to look ahead at the memory requirements of future kernels,
and determine the optimal route through the program to minimize bandwidth.
Sometimes, this optimal route could be calculated before hand, but often the
size of data is not constant, so a good context manager would need to do this
at runtime.

The context manager used for MCMini is Oatmeal, which is described in a
separate document included in the Oatmeal distribution.

5 Results

5.1 OpenCL

MCMini clearly shows that OpenCL is a viable HPC technology, and a potential
route on the path to exascale. The massively parallel nature of GPUs and more
modern CPUs is well-handled by the OpenCL standard. OpenCL continues to
show signs of growth.

MCMini also demonstrates that OpenCL code can be effectively ran on both
a CPU and a GPU, making it an ideal ”transition” technology. Pieces of code
written in OpenCL will be able to run on both newer, GPU-equipped machines,
as well as older, CPU-powered ones.

5.2 Monte Carlo

The speed and relative accuracy of MCMini shows that Monte Carlo methods
can be easily adapted to GPUs, especially using OpenCL.

The mesh data structure proved to be a good data structure for the necessary
3D parallel operations.

Monte Carlo neutron transport methods generally have a very intuitive di-
vision of labor across multiple particles, which is naturally fitted to parallelism.

14

Los Alamos National Laboratory
LA-UR-12-23206 UNCLASSIFIED

References

[1] Marcus, Ryan. ”Monte-Carlo Mini-App on Exa Framework” 2011. Cox,
Larry. Marcus, Ryan. ”Python framework for co-design applications in ex-
ascale R&D” LA-UR-11-06086

[2] Cox, Lawerence. Marcus, Ryan. ”Co-design Applications for Exascale
R&D.” 2011. LA-UR-11-06085

[3] Jungwon Kim, Sangmin Seo, Jun Lee, Jeongho Nah, Gangwon
Jo, and Jaejin Lee. 2012. SnuCL: an OpenCL framework for het-
erogeneous CPU/GPU clusters. In Proceedings of the 26th ACM
international conference on Supercomputing (ICS ’12). ACM,
New York, NY, USA, 341-352. DOI=10.1145/2304576.2304623
http://doi.acm.org/10.1145/2304576.2304623

[4] Kamran Karimi,Neil G. Dickson, Firas Hamze. 2012. A Performance Com-
parison of CUDA and OpenCL. arXiv:1005.2581v3 [cs.PF]

[5] Michael Feldman,February 28, 2012, ”OpenCL Gains
Ground On CUDA” http://www.hpcwire.com/hpcwire/2012-02-
28/opencl gains ground on cuda.html

[6] Steve Scott, ”No Free Lunch for Intel MIC (or GPUs)”. Apr 3 2012
http://blogs.NVIDIA.com/2012/04/no-free-lunch-for-intel-mic-or-gpus/

[7] Lawrence J. Cox, Ph.D. ”LNK3DNT Geometry Support: User Guidance
for Creating and Embedding”, LA-UR-11-01654

[8] William R. Martin and Forrest B. Brown, ”Status of Vectorized Monte
Carlo for Particle Transport Analysis.” The International Journal of Su-
percomputer Applications, Voulme 1, Number 2, pp. 11-32. 1987.

[9] Lee Howes, David Thomas. ”GPU Gems 3”, from
the NVIDIA CUDA developer site, chapter 37.
http://http.developer.NVIDIA.com/GPUGems3/gpugems3 ch37.html

[10] Forrest B. Brown, Yasunobu Nagaya. ”THE MCNP5 RANDOM NUMBER
GENERATOR” American Nuclear Society, 2002. LA-UR-02-3782

[11] AMD 2008, ”Breaking the 1 Teraflop Barrier”.
http://www.amd.com/cn/Documents/AMD ds isc A4sm 061608.pdf

[12] Michael Feldman, ”NVIDIA Launches First Kepler
GPUs at Gamers; HPC Version Waiting in the Wings”
March 22, 2012 http://www.hpcwire.com/hpcwire/2012-03-
22/NVIDIA launches first kepler gpus at gamers hpc version waiting in the wings.html?page=2

15

	Introduction
	Potential Exascale Technologies
	A diverse playing field
	NVIDIA CUDA
	Khronos OpenCL
	Intel MIC

	Selection Criteria
	Performance
	Hardware agnostic code
	Open standard
	Ease of use

	Selection

	MCMini
	Description
	Design
	Performance
	CPU vs GPU Scaling
	Multi-GPU Scaling
	Multi-node Scaling
	Hardware Scaling

	MCMini / MCNP Comparison
	Neutron flux calculations
	Time comparison

	Parallel Algorithms
	Random number generator
	Linear random number generators
	Skip-ahead function

	Buffered Iteration Pattern
	Device Context Switching

	Results
	OpenCL
	Monte Carlo

