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ABSTRACT

Recent deployments of learned query optimizers use expensive
neural networks and ad-hoc search policies. To address these issues,
we introduce LimeQO, a framework for offline query optimization
leveraging low-rank learning to efficiently explore alternative query
plans with minimal resource usage. By modeling the workload
as a partially observed, low-rank matrix, we predict unobserved
query plan latencies using purely linear methods, significantly
reducing computational overhead compared to neural networks.
We formalize offline exploration as an active learning problem,
and present simple heuristics that reduces a 3-hour workload to
1.5 hours after just 1.5 hours of exploration. Additionally, we pro-
pose a transductive Tree Convolutional Neural Network (TCNN)
that, despite higher computational costs, achieves the same work-
load reduction with only 0.5 hours of exploration. Unlike previous
approaches that place expensive neural networks directly in the
query processing “hot” path, our approach offers a low-overhead
solution and a no-regressions guarantee, all without making as-
sumptions about the underlying DBMS. The code is available in
https://github.com/zixy17/LimeQO.

CCS CONCEPTS

• Information systems→ Query optimization.
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1 INTRODUCTION

Recent advances in learned query optimization — using machine
learning to completely replace or aid a traditional query optimizer [57]
— have demonstrated significant performance gains [38, 73, 76, 79,
85]. However, learned optimizers also have several drawbacks: (1)
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Figure 1: An example

workload matrix. Each
row represents a query,

and each column repre-

sents a hint. The value

? represents an unob-

served latency.

the nature of learning techniques can cause unpredictable regressions
(e.g., “my query was fast yesterday, why is it slow today?”), (2) they
suffer from expensive training and inference costs [34] (e.g., from
neural networks [39] or from training data collection times [73]),
and (3) they often make assumptions about the underlying DBMS,
such as the availability of features (e.g., cost estimates [38]) or
the structure of query plans (e.g., tree structured plans with finite
operators [76]).

In the context of repetitive analytic workloads, such as updating
live dashboards and timely report generation, two recent works in
production systems have addressed the first issue of unpredictable
performance regressions: AutoSteer [3] and QO-Advisor [82]. The
core idea behind both approaches is to use offline execution to
verify that potential new query plans are actually better than the
default plan. If verified, the new query plan is added to a plan cache
and used when an eligible query arrives. This simple technique
ensures that no query ever regresses (absent data shift), but at the
cost of potentially expensive offline execution.

While major steps in the right direction, neither AutoSteer nor
QO-Advisor are deeply strategic in their offline exploration: both
exhaustively test a set of alternative plans, and control for exces-
sive offline exploration time by heuristically limiting the set of
alternative plans explored. For example, QO-Advisor limits the set
of alternative plans to those produced by a “single rule flip” [82],
while AutoSteer simply tests the 𝑛 most promising plans. To the
best of our knowledge, the broader problem of how to effec-

tively explore the space of alternative plans offline, in a way

that maximizes workload benefit while minimizing offline

computation time, has not been systematically explored.

Here, we formalize and expand on this offline exploration ap-
proach. Our proposed framework seeks to minimize offline resource
usage while maximizing performance improvements, maintaining
the “no-regressions” guarantee (compared to the underlying tradi-
tional optimizer) of prior work [3, 82]. Additionally, we avoid any
tight coupling between our framework and specific DBMSes: we
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do not make assumptions about the structure of query plans, the
number of operators, or even the availability of cost estimates. The
only assumption our framework makes is that each query plan has
a number of alternatives with measurable latency. To accomplish
this, we introduce a new approach to learned query optimization
called LimeQO, which is trained with purely linear methods, leading
to drastically simpler and lower overhead implementations.

Target workload & hints. Like AutoSteer and QO-Advisor, we
target query workloads that are mostly repetitive. Thus, we as-
sume that most queries and their set of potential query plans are
known ahead of time, although we do support the addition of new
queries over time. Additionally, like prior work on learned query
optimization [3, 38, 44, 73, 82], we assume that the underlying query
optimizer provides a “hint” interface to create different variations
of query plans. We justify these decisions in Section 3.

Workload matrix. Our core insight is to model the problem of
offline optimization as a matrix completion (MC) [21] problem: we
can represent a workload with 𝑛 repeated queries and 𝑘 possible
query hints as aworkload matrix W, where each entry is the latency
of a plan, as shown in Figure 1. Selecting the best hint for each query
amounts to taking a row-wise minimum. Unfortunately, computing
the whole matrix would require 𝑛 × 𝑘 query executions, which
could be prohibitive. Instead, we consider the workload matrix to
be partially observed: some entries are known (observed, or part
of the training set), and other entries are unknown (unobserved).
“Completing” the matrix means predicting the unobserved values.

Readers familiar withMCmay note that one common application
of MC is recommendation systems [51]. Indeed, we will show that
LimeQO works for similar reasons as recommendation systems do:
since sets of queries that perform well with some hints also tend to
perform poorly with other hints, the rank 𝑟 of the workload matrix
is low. This low rank means that (among other things) we can
construct an accurate estimate ofW using two factored matrices
Q ∈ R𝑛×𝑟 and H ∈ R𝑘×𝑟 : Ŵ = QH𝑇 . This approximation can be
found using purely linear methods that use 100x less computational
resources than their neural network counterparts (e.g., TCNNs [41]).

Offline optimization as active learning. Matrix completion
allows us to approximate missing entries in the workload matrix,
but we still need a way to explore the workload matrix efficiently.
Ideally, we want to discover the minimum value of each row (the
fastest hint for each query) as quickly as possible. This can be consid-
ered an active learning [53] problem, in which we must intelligently
select which new pieces of information to observe next. Observing
each new piece of information has an associated value (the amount
we can improve the latency of the query) and a cost (the amount of
offline exploration time we use). We present two simple algorithms
inspired by active learning that are especially suited toward this
special variant of the problem. These active learning techniques
allow us to achieve near-optimal performance by spending only the
default workload time (i.e., a few hours) rather than exhaustively
exploring the entire space, which would take over 10 days.

Transductive neural networks. When computational overhead
is not a limiting factor, and when certain assumptions (such as
tree-structured plans) can be made about the underlying database

system, our framework can also integrate expensive neural network
models. Of course, doing so increases inference overhead, but may
lead to faster convergence due to the power of neural networks. We
present a new type of tree convolution neural network (TCNN) [41]
called a transductive TCNN which combines the tree-structured
inductive bias of a TCNN with learned representations of the Q and
H matrices. Unsurprisingly, our computationally expensive neural
network is a better approximator of W than purely linear methods.
It accelerates the 3-hour workload by a factor of 2 with 0.5 hours of
offline exploration, whereas purely linear methods took 1.5 hours
of exploration to achieve the same speedup. However, the overhead
of the neural network in the inference phase is 360 times higher
than linear methods.

Trouble with timeouts. A key challenge to exploring the work-
load matrixW is dealing with queries with unusually long latencies.
For a particular row in the matrix, if the current best query plan
takes 𝑥 seconds, then in some sense it is wasteful to execute any
other plan in that row for longer than 𝑥 seconds: once a plan takes
longer than 𝑥 seconds, we can rule it out as the optimal plan. Un-
fortunately, simply placing the timed out query value into W will
mislead the machine learning model: it will look like the timed-out
query plan took 𝑥 seconds to execute, but in reality, that plan could
have taken much longer (the true latency of the plan is not known,
but the fact that true latency is greater than 𝑥 is known). Prior
work, like Balsa [76], has addressed this issue by setting the query
timeout to some integer multiple 𝑆 of 𝑥 , allowing the model to at
least see that the timed-out plan took longer than 𝑆𝑥 to execute.
However, this solution is still suboptimal, since (1) it executes the
timed-out query for longer than necessary (i.e., by an integer factor)
and (2) still “misleads” the machine learning model by treating the
latency of the query as 𝑆𝑥 .

In this work, we show how a well-studied machine learning trick
called censored observations [71] can be applied to learned query
optimization. Using our technique, we can treat timed-out queries
as “first-class citizens,” penalizing models for underestimating the
the timed-out query’s latency, but not penalizing the model for a
(potentially valid) over-estimate. We show how to handle censored
observations both in MC and in the transductive TCNN. Our ex-
periment shows that the censored technique reduced the 3-hour
workload to 1.5 hours after 0.5 hours of exploration, whereas with-
out the censored technique, it took 0.9 hours to achieve the same
reduction.

Contributions We make the following contributions:
• We present LimeQO, a framework for offline exploration for
query optimization formalized as an active learning problem,
and present two simple heuristic solutions.
• We present a modified version of the popular alternating-least-
squares (ALS) [21] MC algorithm which can handle censored
observations (timeouts).
• We present the transductive TCNN, a neural network specially
designed for offline query optimization which takes advantage
of the low rank structure of the workload matrix, which can also
handle censored observations.
• We show how LimeQO can be extended to handle new queries
and data drift.
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The rest of this paper is organized as follows. We present our
systemmodel in Section 3.We define the offline exploration problem
in Section 4. In Section 5, we present experimental results. Finally,
we present related works in Section 2 and concluding remarks in
Section 6.

2 RELATEDWORK

Learned Query Optimization. Recent works have explored the
integration ofmachine learning techniques into several components
in DBMS, such as learned cardinality estimators [18, 28, 30, 36, 46,
52, 77], learned cost models [23], and learned query optimizers.
Learned query optimizers are broadly divided into two categories:
“full” learned optimizers that synthesize entire query execution
plans from scratch, effectively replacing the traditional query opti-
mizer [11, 26, 32, 39, 40, 48, 76, 80, 85], and “steering” learned opti-
mizers that sit on top of a traditional optimizer [12, 38, 73, 78, 79].
The latter “steering” approach has fewer degrees of freedom, but
exhibits lower variation, leading to adoption in some production
systems [3, 82, 86]. Since any performance variation can be harmful
to downstream applications, offline execution is often used to ver-
ify performance improvements [3, 37, 68, 82], although confidence-
learning based approaches are also being developed [25, 26, 72]. Our
approach builds upon the “steering” approach. Unlike AutoSteer [3]
and QO-Advisor [82], we explore the space of query-hints combina-
tions holistically, taking the entire workload into account, reducing
the need for exhaustive execution while still preventing regressions.
To the best of our knowledge, the only prior work on learned query
optimization at the workload level is GALO [15], which mines
query logs for problematic executions and recommends fixes for
slow queries. Notably, GALO does not require offline query exe-
cution like the current work, but GALO is not guaranteed to be
regression-free.

Our approach is closely related to BayesQO [67], a concurrent
method also aimed at offline query optimization. However, while
BayesQO optimizes one query at a time, our framework simulta-
neously optimizes an entire query workload. Furthermore, while
BayesQO considers the entire set of possible query execution plans,
our method considers a small, finite set of execution plans (e.g., 48
candidate plans in PostgreSQL). By optimizing at the workload level
instead of the individual query level, our approach can leverage
inter-query similarities and the low-rank structure of the work-
load matrix. Additional details on the performance differences are
provided in Section 5.6.

Matrix Completion. Matrix completion is a decades-old tech-
nique [19] that has been widely used in collaborative filtering [31]
and recommendation systems [21], although MC has also been the
subject of deep mathematical investigation [8]. Linear methods
have also been used by learned cardinality estimators [63]. Several
algorithms have been proposed for matrix completion, including
nuclear normminimization [9], singular value thresholding [7], and
alternating least squares (ALS) [21]. More recently, deep learning
techniques have been introduced to capture complex, non-linear
relationships in recommendation systems [14, 20, 22, 43, 54, 81].
These methods leverage neural networks to learn intricate patterns
in user-item interactions, outperforming traditional linear models.
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Figure 2: LimeQO system model

Our LimeQO+ approach differs from these existing models by using
the transductive approach [47] that incorporate query plan trees
into each matrix entry, rather than relying on the user and item
features.

Active Learning. Active Learning [53, 59] is a well-established
technique that aims to select the next training instance to label,
with the primary goal of optimizing for the most information gain.
As discussed in Section 4.2, most existing works assume that the
cost of acquiring the label is fixed [10, 55, 65], irrespective of the
instance, and thus does not need to balance between labeling cost
and the value of the label. While Selective Supervision [27] does
explore the idea of balancing the cost of labeling against expected
improvement, it still assumes a uniform cost within each class,
which is not valid in our case. Additionally, many multi-armed
bandits-based active learning methods [6, 17, 24] assume an un-
limited pool of observations, which also does not fit our scenario.
We found these approaches ineffective for our matrix completion
problem, highlighting the need for more customized strategies. Our
Greedy strategy seeks to prioritize the longest-running query un-
der the premise that it has the most potential value. In contrast,
LimeQO uses its current predictive model to estimate the instance
with the largest expected benefit.

3 SYSTEM MODEL

LimeQO uses offline exploration to find the optimal hint for a set of
queries in a repetitive workload. LimeQO does this by formulating
the problem as low-rank matrix completion. Leveraging the low-
rank property allows us to efficiently and accurately complete the
workload matrix W. LimeQO operates externally to the DBMS,
interacting with both the query optimizer and the execution engine.
It explores better plans within the available query hint space by
“steering” [38, 73] the existing query optimizer. The system model
for this interaction is shown in Figure 2.

Our prototype system was implemented to target the query op-
timizer for PostgreSQL, which features one of the most complex
query optimizers in a widely used open source query engine. Nu-
merous systems, including Amazon RedShift, TimescaleDB, and
EnterpriseDB all build upon PostgreSQL’s core, and our system
would naturally extend to them. Additionally, the general approach
of query hints is used by several other query optimizers, such
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as those in Presto [64], MySQL, and Microsoft’s SQL Server and
SCOPE [82].

Our framework has two paths: an online path, in which user-
submitted queries are executed using plans that have been verified
to be fast, and an offline path, where LimeQO can perform offline
exploration. In the online path, ❶ user-submitted queries are re-
ceived by the DBMS’ traditional optimizer. Then, ❷ the optimizer
asks LimeQO if a better query plan has been observed for this query.
❸ LimeQO replies with either a query plan that is faster than the de-
fault plan, or the default plan. ❹ This verified plan is then executed,
❺ and the results are returned. In the offline path, LimeQO searches
for better query plans. This offline search could happen when the
DBMS is idle [13], or could be performed on a snapshot of the data-
base. During this time, LimeQO will ❶ predict the performance of
all query plans in the workload matrix, and then ❷ select the most
promising query plans to explore. Next, ❸ these promising plans
are executed, using a timeout based on the current best-known plan
for that query. Once the new query plan finishes executing or times
out, ❹ the performance is recorded. ❺ The newly observed values
are finally stored back into the workload matrix. Importantly, the
workload matrix contains two types of entires: (a) complete entries,
representing query plans whose latency was observed via execu-
tion, or censored entries, representing queries plans that timed out,
but for which a lower bound on their execution time is now known
(e.g., if a query plan times out after 2 minutes, we assume that the
true latency of that plan is greater than 2 minutes).

Our goal. A naive implementation of LimeQO could simply evalu-
ate random unobserved query plans (i.e., test blank entries in the
workload matrix), but this strategy could waste offline execution
time testing bad plans. Executing the entire matrix exhaustively
is impractical; for example, processing the full CEB [45] workload
would take 12 days, and the Stack [45] workload would require
even longer than 16 days. Thus, LimeQOmust strategically use each
moment of offline execution time to create the largest improvement
to the overall workload.

Assumptions. We make the following assumptions:
(1) The DBMS repeatedly executes a set of queries, referred to

as the workload. Identical queries occur multiple times, and
we cache them after the second occurrence and begin optimiz-
ing their performance. Thus, the workload consists of a set of
unique queries.

(2) Each query in the workload has a default plan chosen by the
underlying query optimizer, as well as a set of alternative plans,
or hints [3, 38, 73], a commonly used technique to guide query
optimization.

(3) Queries generally exhibit consistent performance, meaning that
the measurements obtained during the offline phase closely
mirror those during online execution. Some may argue that
data shifts might occur between the offline and online stages,
potentially affecting performance. To address this concern, we
provide two key observations. First, we demonstrate that near-
optimal performance can be achieved after a duration equiva-
lent to the total workload time (Section 5.1), making the time
gap between the two phases negligible. Second, we show that

even if data shifts occur, the best hint typically remains the
same (Section 5.4), thus not significantly impacting our perfor-
mance gains.

Why target repetitive workloads? At first glance, considering
only repeating queries may seem like a major restriction. While
there are certainly workloads with few or no repeating queries,
there are also workloads like live dashboards that are almost purely
repetitive [3]. Recent studies of the AWS Redshift analytics data-
base product found that more than 50% of the queries executed
on the Redshift fleet were repeated within 24 hours [56, 75, 83],
75% are repeated within a week, and 80% within a month. Further-
more, analyses have shown that long-running queries (those taking
longer than 1 hour) almost always repeat across all clusters [69]. In
Microsoft’s SCOPE database, over 60% of the job volume is recur-
ring [82]. Thus, targeting repeated workloads is both practical and
impactful.

Handling novel queries. However, focusing solely on repetitive
queries is still a major limitation to practitioners: new queries might
not come along very often, but new queries almost certainly are
introduced over a long period of time. Thus, we can say that new
queries are rare but guaranteed. LimeQO can support such rarely-
arriving new queries in an intuitive way: we simply add new rows
to the workload matrix. The prior entries in the workload matrix
can potentially help predict the entries for the newly added rows
(queries). The first time a new query is added, it is always executed
using the underlying DBMS’ default plan to avoid regressions, so
one cell of the new rows is initialized. We evaluate and discuss
LimeQO’s performance on novel queries in Section 5.3.

Why use query steering / hints? We assume, like prior work [3,
38, 44, 73, 82], that the underlying DBMS’ query optimizer supports
“hints” that change the behavior of the optimizer. Each hint is a
coarse-grained knob in the optimizer that impacts query selection,
for example, disabling or enabling a particular join operator. For
simplicity, we use “hint” to refer to a specific configuration of the
optimizer, which in some systems may mean a combination of
multiple distinct hints (i.e., “hint sets” [38]).

Casting learned query optimization as a hint selection problem,
first done by Bao [38], as opposed to fully replacing a query opti-
mizer with a learned component [39, 76, 85], or deeply integrating
a solution with a particular optimizer, has a number of advan-
tages. First, the “hinting” interface as described is implemented by
a wide variety of databases, including PostgreSQL [50], Presto [64],
SCOPE [44], and RedShift [4]. Second, while optimizer hints are
coarse-grained, they are also robust: selecting a plan that has been
generated by a traditional query optimizer with a particular hint is
much more likely to result in a reasonable plan than finer-grained
techniques [38]. Third, hints have enough granularity to signifi-
cantly improve a wide variety of analytic queries [44], making hint
steering an especially good match for repetitive analytic workloads.

4 OFFLINE EXPLORATION

In this section, we first formulate the offline exploration problem
(Section 4.1). Then we introduce our active learning exploration
policy (Section 4.2), and extend it with two predictive models: a
linear method (Section 4.3.1) and a neural method (Section 4.3.2).



Low Rank Learning for OfflineQuery Optimization SIGMOD ’25, June 22–27, 2025, Berlin, Germany

4.1 Problem Definition

Formulation. Let 𝑄 = {𝑞1, . . . , 𝑞𝑛} be a set of regularly executed
queries, and let 𝐻 = {ℎ1, . . . , ℎ𝑘 } be a set of hints. We define a
workload matrixW as a 𝑛 × 𝑘 matrix that holds the performance
metric (e.g., latency) for each query (row) and for each hint (column):
that is,W𝑖 𝑗 represents the latency of running query 𝑞𝑖 with hint ℎ 𝑗 .
Since exactly computing W is prohibitive (i.e., requiring 𝑛𝑘 query
executions), we assume we only have access to a partially observed
copy ofW, denoted as W̃:

W̃𝑖 𝑗 =

{
W𝑖 𝑗 ifW𝑖 𝑗 is observed
∞ otherwise

(1)

When a query 𝑞𝑖 ∈ 𝑄 arrives, we select the hint ℎ 𝑗 with the best
observed latency, that is, the minimum value in the row W̃𝑖 .

Our goal is to design an exploration policy to reveal unobserved
entries that can optimize performance while minimizing the offline
time spent revealing entries of W̃. We define 𝑃 as the current work-
load latency,1 (i.e., the sum of the minimum observed values for
each query) as follows:

𝑃 (W̃) =
𝑛∑︁
𝑖=1

min
1≤ 𝑗≤𝑘

W̃𝑖 𝑗 (2)

andwe define𝑇 as the offline exploration time required for revealing
entries in the matrix to attain W̃:

𝑇 (W̃) =
𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

W̃𝑖 𝑗 · 1{W̃𝑖 𝑗≠∞} (3)

The challenge lies in minimizing both the workload latency
𝑃 (W̃) and the total offline exploration time 𝑇 (W̃) simultaneously.
While 𝑃 (W̃) can be minimized by fully exploring all entries of
W, this would maximize 𝑇 (W̃). Conversely, 𝑇 (W̃) can be trivially
independently minimized by doing no exploration at all, leading
to sub-optimal 𝑃 (W̃) performance. Thus, we seek an algorithm to
achieve both objectives simultaneously.

Timeouts. A key aspect of the offline exploration process is that
we are only interested in hints that outperform the current best
observed hint. Therefore, we can safely optimize exploration by
introducing a timeout limit, T𝑖 𝑗 , for each entry in the matrix, which
is set to the currentminimum latency observed in the corresponding
row of W̃:

T𝑖 𝑗 = min
1≤ 𝑗≤𝑘

W̃𝑖 𝑗 (4)

This allows us to update the workload matrix W̃ by applying the
timeout condition:

W̃𝑖 𝑗 =


W𝑖 𝑗 ifW𝑖 𝑗 is observed
T𝑖 𝑗 ifW𝑖 𝑗 exceeds the timeout
∞ otherwise

(5)

We note that W̃ evolves dynamically during the execution of the
algorithm, as new entries in the matrix are observed.
1Practitioners may also be interested in optimizing tail latency instead of total latency,
in which case 𝑃 can be defined as the tail latency of the workload.

Algorithm 1: LimeQO

Input: W̃: initial observed matrix;M: mask matrix; T:
timeout matrix; 𝑝𝑟𝑒𝑑 : predictive model

Output: Hint selections [ℎ1, . . . , ℎ𝑛] for workload
1 whileM ≠ 1 do

2 Ŵ← 𝑝𝑟𝑒𝑑 (W̃,M,T);
3 for 𝑖 = 1 to 𝑛 do

4 ℎ 𝑗 ← 𝐻 [argmin𝑗 (Ŵ𝑖 𝑗 )];
5 𝑟𝑖 ← (min W̃𝑖 − Ŵ𝑖 𝑗 )/Ŵ𝑖 𝑗 ;
6 add (𝑞𝑖 , ℎ 𝑗 ) to 𝑆 if 𝑟𝑖 > 0 ;
7 Select top𝑚 largest (𝑞𝑖 , ℎ 𝑗 ) from 𝑆 w.r.t. 𝑟𝑖 ;
8 if not enough to select then

9 randomly select some unobserved (𝑞𝑖 , ℎ 𝑗 );
10 T𝑖 𝑗 = min(min(W̃𝑖 ), Ŵ𝑖 𝑗 × 𝛼);
11 Offline execute, timeout ifW𝑖 𝑗 ≥ T𝑖 𝑗 ;
12 UpdateM, T, and W̃;
13 for 𝑖 = 1 to 𝑛 do

14 ℎ𝑖 ← 𝐻 [argmin𝑗 (W̃𝑖 𝑗 )];
15 return [ℎ1, . . . , ℎ𝑛]

By incorporating timeouts, we can bound the time spent on
exploration of hints that will show no performance improvement –
even if our predicted exploration time was incorrect.

4.2 Active Learning on a Low-Rank Matrix

Active learning strategies can be employed to efficiently explore
and reveal unobserved entries in the matrix. Instead of exhaustively
probing all entries, an active learning approach aims to identify the
most informative entries to query, which can significantly reduce
the exploration cost.

Here we propose two active learning techniques: Greedy and
LimeQO (Algorithm 1).

Greedy. Greedy does not rely on any predictive model. It selects
the queries with the largest current minimum observed latency, ie.
argmax𝑖 (min1≤ 𝑗≤𝑘 W̃𝑖 𝑗 ). Then for each query, we randomly select
an unobserved hint. This strategy focuses on improving queries
with the worst observed performance, as they offer the greatest
potential for reducing the overall workload latency 𝑃 (W̃).

The underlying assumption of the greedy technique is that there
is a correlation between the duration of a query plan and that query
plan’s potential room for improvement. While this assumption is
often true in academic benchmarks (where we select long-running
queries precisely because they have a lot of room for improvement
— otherwise the benchmark would not be very interesting), this
assumption might not be true in practice. For example, the longest-
running queries on Amazon RedShift are normally COPY queries or
ETL jobs [70] (e.g., a query that dumps the result of a simple scan
to a CSV file). These types of queries have almost no room for im-
provement, since they are almost entirely bounded by write speed.
We demonstrate this experimentally in Section 5.1. Nevertheless,
we evaluate Greedy as a useful baseline.
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LimeQO. The LimeQO approach, on the other hand, uses a pre-
dictive model to guide exploration. We will first use the predictive
model to complete the partially observed matrix W̃ and generate
the predicted matrix Ŵ, which fills in the unobserved entries using
estimated values. Then, LimeQO selects query plans with the largest
expected benefit, balancing the minimization of both 𝑃 (W̃) and the
offline exploration time 𝑇 (W̃). For each query 𝑞𝑖 , we compute the
expected improvement ratio as follows:

𝑟𝑖 =

(
min

1≤ 𝑗≤𝑘
W̃𝑖 𝑗 − min

1≤ 𝑗≤𝑘
Ŵ𝑖 𝑗

)
/ min
1≤ 𝑗≤𝑘

Ŵ𝑖 𝑗 (6)

This ratio captures the potential performance improvement from
exploring the predicted best hint for query 𝑞𝑖 compared to its cur-
rent best observed hint. By normalizing with the predicted best
latency, we ensure that exploration focuses on minimizing both
𝑃 (W̃) and 𝑇 (W̃).

Algorithm 1 presents LimeQO in detail: Given an initial W̃, we
use a predictive model to construct an estimate Ŵ (Line 2). With
the estimated value, we go through every row of the predicted
matrix and compute expected improvement ratio (Equation 6 and
Line 6). The top 𝑚 queries (Line 7), based on this improvement
ratio, are then selected for exploration. In the case where there
are fewer than 𝑚 positive predicted improvements (Line 8), we
will randomly select some unobserved entries (Line 9) to observe.
Finally, we execute the𝑚 selected plans, timeout the plan if the
plan’s latency is greater than T𝑖 𝑗 (Line 11), record their latency, and
updateM, T, and W̃ (Line 12). This process can be repeated until
there is no more offline exploration time left, or when the algorithm
stops finding potential improvements. Finally, we will return the
current best hint for each query (Line 13-14).

Why not use existing active learning approaches? Our two
proposed methods join an extensive literature of methods within
the active learning community [53, 59]. Surprisingly, many existing
active learning techniques make fundamental assumptions that
render them unsuitable for our environment. For example, most of
the techniques specific to active matrix completion assume that the
cost of acquiring the label is fixed [10, 55, 65], and thus there is no
need to balance the potential improvement in query time versus the
cost of exploring a query hint. Additionally, the scoring function in
the Bayesian active learning method [60] are less suitable for the
unique characteristics of our problem space, since in our problem
the cost of revealing a matrix cell is correlated with the matrix cell’s
value (i.e., the cost of revealing the plan is the plan latency). Thus,
we intentionally designed our scoring function to prioritize the
efficient discovery of optimal hints for query optimization. Even
methods such as selective supervision [27], which balance cost
against improvement, assume a uniform cost within each class.
The few methods we found that do not assume a fixed value or
fixed cost were based on multi-armed bandits [6, 17, 24, 66], which
assume that the pool of unlabeled observations is so large that
taking an unlabeled observation and labeling it does not change
the distribution of unlabeled observations. This is patently untrue
in our scenario, since observing a matrix entry obviously prevents
that same matrix entry from being observed again. We tested each

Algorithm 2: ALS

Input: W̃: observed matrix;M: mask matrix; T: timeout
matrix; 𝑟 : rank; 𝜆: regularization parameter; 𝑡 :
number of iterations

Output: Completed matrix Ŵ
1 Initialize Q,H of size n × r, and k × r randomly ;
2 for 𝑖 = 1 to 𝑡 do
3 Ŵ← M ⊙ W̃ + (1 −M) ⊙ QH𝑇

4 if Ŵ < T and T > 0 then
5 Ŵ = T // Censored technique

6 Q← ŴH(H𝑇H + 𝜆𝐼 )−1 // Update Q with least squares solution

7 Q[Q < 0] = 0 // Ensure non-negative entries

8 Ŵ← M ⊙ W̃ + (1 −M) ⊙ QH𝑇

9 if Ŵ < T and T > 0 then
10 Ŵ = T // Censored technique

11 H← ŴQ(Q𝑇Q + 𝜆𝐼 )−1 // Update H with least squares solution

12 H[H < 0] = 0 // Ensure non-negative entries

13 Ŵ← M ⊙ W̃ + (1 −M) ⊙ QH𝑇

14 return Ŵ

of these approaches to see if they would work even if their core
assumptions were violated, but we were not successful.

4.3 Predictive Model

In real-world scenarios, the workload matrix W often exhibits low-
rank structure due to inherent correlations among queries and hints.
Leveraging this property, we propose two predictive models: linear
methods based on matrix completion [21] (Section 4.3.1) and neural
methods based on low rank embeddings and tree convolution neural
networks (TCNN) [39, 41] (Section 4.3.2). These two models can be
easily integrated as the predictive model in Algorithm 1.

4.3.1 Linear Method. We applymatrix completion [21] as the linear
method. By assuming that W has low rank, the observed entries
ofW can be used to predict the unobserved entries. Notably, this
technique uses the partially observed matrix W̃ directly, and does
not rely on any properties of the queries or their plans (e.g., cost
estimates, plan structure, operators).

Matrix completion. Matrix completion (MC) is a technique used
to recover unobserved entries in a low rank matrix [8, 9, 21, 61]. We
defineM as themask matrix, which has the same shape as W̃:M𝑖 𝑗 =

0 if W̃𝑖 𝑗 = ∞ and M𝑖 𝑗 = 1 otherwise (that is, M is one for observed
entries of W̃ and zero otherwise). Given a partially observed W̃, a
rank constraint 𝑟 , and a regularization parameter 𝜆, we can build
an estimate ofW as Ŵ = QH𝑇 by solving:

min
Q,H

[
∥M ⊙ (W̃ − QH𝑇 )∥2𝐹 + 𝜆

(
∥Q∥2𝐹 + ∥H∥

2
𝐹

)]
(7)

where Q and H are 𝑛 × 𝑟 and 𝑘 × 𝑟 matrices, respectively, and ⊙
represents the element-wise product. To find Q and H, we use the
Alternating Least Squares (ALS) algorithm [21], which is based on
the following key observation: while Equation 7 is not jointly con-
vex inQ andH, Equation 7 is convex inQ for fixedH, and vice versa.
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Figure 3: Linear Method

Figure 4: Neural Method

Convexity in this context implies that optimizing Q or H while the
other is fixed ensures convergence to a global minimum for that
subproblem. This property is crucial to the ALS algorithm, which al-
ternatives between solving each convex subproblem, progressively
improving the overall solution (although there is no guarantee that
the final approximation is optimal).

Algorithm 2 details our modified version of the ALS algorithm:
we iteratively update the matrices Q and H using the least squares
solution (lines 6 and 11), and fill in the predicted entries (lines 3
and 8). Additionally, since query latencies are strictly positive, we
impose non-negative constraints on Q and H after each iteration
(lines 7 and 12). While this constraint may slightly reduce approxi-
mation flexibility, it ensures the data remains physically meaningful
(i.e., positive), allowing the score function (Equation 6) to operate
effectively. The non-negative constraint can be interpreted as a
heavy-handed2 prior that query latency must be positive.

Predicted Latency. We illustrate the matrix factorization process
in Figure 3. To calculate an unobserved entry, we simply compute
the dot product of the corresponding two vectors: Ŵ𝑖 𝑗 = Q𝑖H𝑗 .
Thus, each row of Q represents a “query vector” that contains
information about the query in a particular row, and each column
of H represents a “hint vector” that contains information about the
hint in a particular column. We pick Q and H such that the dot

2We say “heavy-handed” because negative entries in Q or H do not necessarily result
in negative predicted latencies.

product of a query vector and a hint vector predicts the latency of
a given query under that specific hint.

Timeouts / Censored Technique. To handle the timeouts dur-
ing the exploration process, we incorporate a censored technique
specifically designed for this scenario. We define the timeout matrix
T, with the same shape as W, where only the timeout values are
filled in, and all other entries are zeros. As shown in Algorithm 2,
lines 5 and 10, if the predicted value for a timed-out entry does not
meet the timeout threshold (i.e., it is smaller than the timeout), we
manually set it to the timeout value to reflect the observed limita-
tions. This way, future iterations of ALS will never try to predict a
value less than the timeout, but if a prior iteration of ALS predicts
a value greater than the timeout, that value will be kept for future
iterations.

4.3.2 Neural Method. Here, we present an alternative approach for
offline query optimization using a neural network. In this approach,
we assume query plan features are available (e.g., cost and cardinal-
ity estimates), and that the underlying query optimizer generates
tree-structured plans, such as those generated by PostgreSQL [1].
Leveraging these additional features may provide better accuracy
than LimeQO, albeit with increased computational overhead.

Systems like Neo [39], Bao [38], and Balsa [76] use plan features
to learn a value function that estimates the overall cost or latency of
executing a query. Similarly, we propose a new predictive transduc-
tive TCNN model, which combines tree-structured features with the
low-rank property of the workload matrix. We will first describe
Tree Convolution [41], followed by an explanation of how TCNN
Embedding integrates Tree Convolution with low-dimensional em-
beddings.

Tree Convolution. Tree convolution [41] is an adaption of tra-
ditional image convolution, designed for tree-structured data. It
applies tree-shaped filters to query plans, identifying patterns re-
lated to query performance [39].

We first binarize the query plan trees as described in Bao [38],
and encode each tree node into a vector that includes: 1) a one-hot
encoding of the operator, 2) cost and cardinality information. After
the final layer of tree convolution, dynamic pooling and fully con-
nected layers are used to predict query performance. Tree Convolu-
tions can effectively capture structural patterns in query plans and
serves as an inductive bias for solving query optimization problems
(i.e., the structure of the TCNN network is biased towards learning
features that are useful for query optimization [39]). This technique
has been widely applied in query optimization [3, 26, 38, 76].

TCNN Embedding. In contrast to the linear model approach
(Section 4.3.1), where two matrices are used to replace a neural
model and predict performance, TCNN Embedding combines low-
dimension matrix representations with plan tree features using a
neural network architecture. The key component of this approach
is the Embedding layer, which provides compact vector represen-
tation of queries and hints.

As shown in Figure 4, each query and each hint is mapped to
a vector of size 𝑟 via the two embedding layers. These vectors are
learned in such a way that similar queries and hints are represented
by similar vectors. After retrieving the embedding vectors, we
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concatenate them with the outputs from the tree convolution layer.
The concatenated vector, containing both structural information
from the query plan tree and low-rank embeddings, is then passed
through fully connected layers for performance prediction. This
hybrid approach combines the advantages of tree convolution and
low-rank embeddings, resulting in better performance compared
to using either method alone.

The reason that the transductive TCNN captures the low-rank
structure of the workload matrix is that the learned embeddings,
labeled Q and H in Figure 4, are isomorphic to the linear decom-
position matricies Q and H: the embedding for a particular query
represents features for the entire row of the matrix, and the embed-
ding for a particular hint represents features for an entire column
of the matrix. Since the same query embedding is used for every
entry in a row of W, and since the same hint embedding is used
for every entry in a column ofW, the transductive TCNN can be
said to have weight sharing [33].

Predicted Latency. In each offline exploration step, we train a
TCNN Embedding model to predict the unobserved values in W̃.
Specifically, the model is trained using the observed entries of W̃,
using features extracted from each query plan as well as the cor-
responding query and hint indices (𝑖, 𝑗). After training, the model
performs inference to generate predicted latencies for the unob-
served entries. Consequently, Ŵ consists of the actual latencies for
the observed entries and the model’s predictions for the unobserved
ones. Furthermore, the model is initialized with the weights from
the previous step, enabling it to build on prior learning.

Timeouts / Censored Technique. Recall that for some entries
in the matrix, we timed out at a certain threshold 𝜏 and thus the
values represent a lower bound of the actual execution time. To
effectively incorporate these censored observations into our neural
network model, we introduce a new loss function specifically for
the timed-out values in the neural network model training process:

L(𝑦,𝑦, 𝜏) = 1
𝑛

𝑛∑︁
𝑖=1

1{�̂�𝑖<𝜏𝑖 } · (𝑦𝑖 − 𝑦𝑖 )
2 (8)

where 𝑦𝑖 is the predicted value, 𝑦𝑖 is the true value, and 𝜏𝑖 is the
timeout value for the ith entry. The term 1{�̂�𝑖<𝜏𝑖 } is an indicator
function, which is 1 if predicted value is less than the threshold
and 0 otherwise. This loss function ensures that only predictions
less than the timeout threshold contribute to the loss calculation,
penalizing the model for incorrect predictions where it is certain to
miss the true value, while not penalizing it for predictions where
the correctness of prediction is uncertain.

By replacing the standard Mean Squared Error (MSE) loss with
this censored loss function, we enable the model to appropriately
handle timeout observations and effectively learn from them.

5 EXPERIMENTS

In this section, we conduct a series of experiments to evaluate
our proposed techniques: LimeQO, the linear method introduced
in Section 4.3.1, and LimeQO+, the neural method introduced in
Section 4.3.2. Our experimental results seek to answer the following
questions:

• How does LimeQO and LimeQO+’s performance compare to
simple baselines and existing techniques? (Section 5.1) And how
much overhead do LimeQO and LimeQO+ entail? (Section 5.2)
• How well does LimeQO handle workload shift (Section 5.3) and
data shift? (Section 5.4)
• How reasonable is our low rank assumption, and how much does
each component and optimization of LimeQO matter (ablation
studies)? (Section 5.5)

Experimental setup. We evaluated LimeQO using PostgreSQL
16.1 [1]. LimeQO uses the same 49 hints as Bao [38], which are based
on six configuration parameters where we can enable or disable
hash join, merge join, nested loop join, index scan, sequential scan,
and index-only scan3. Each (query, hint) pair is executed five times
on an AMD Ryzen 5 3600 6-Core Processor, running Arch Linux
6.11.3. For the subsequent experiments, we selected the median
runtime for each pair. Additionally, each technique’s experiments
were repeated five times, and we report the average runtime along
with the standard deviation.

Workload and datasets. Weevaluated the performance of LimeQO
using multiple diverse workloads from prior work, which are de-
tailed in Table 1. The JOBworkload [35] is relatively small, compris-
ing only 113 queries on the IMDb database. The CEBworkload [45]
expands upon JOB by adding thousands of additional queries. The
Stack dataset contains over 18 million questions and answers from
StackExchange websites (e.g., StackOverflow.com) collected over
ten years. We have two snapshots of this data from 2017 and 2019.
In Section 5.1, we use the 2019 version, and in Section 5.4, we utilize
both versions to model data shifts. The DSB benchmark [16] is
adapted from the TPC-DS benchmark [42] with more complex data
distribution and more varieties in queries. Specifically, we select a
scale factor of 50 (following prior work [74, 84]) and generate 20
distinct parameterized query instances from each query template.

For each workload, we list the time it takes for a vanilla Post-
greSQL database to execute every query (“Default”), and the the-
oretical minimum time achievable by a not-possible-in-practice
oracle function (“Optimal”). Each workload has between 1.36x to
2.66x “headroom” (Default/Optimal).

Workload Dataset Size # Queries Default Optimal

JOB [35] IMDb 7.2 GB 113 181 s 68 s
CEB [45] IMDb 7.2 GB 3133 2.94 hrs 1.02 hrs
Stack [38] Stack 100 GB 6191 1.46 hrs 1.09 hrs
DSB [16] DSB 50 GB 1040 4.75 hrs 2.74 hrs

Table 1: Four workloads we covered in the experiments. De-

fault refers to the total time taken with PostgreSQL’s default

hint, while Optimal is the best time achievable if all hints

were explored.

Techniques and tests. We compare six different methods. For
each method, we initially reveal the entries in the workload ma-
trix corresponding to the default plan produced by PostgreSQL,
simulating an environment where queries are executed repeatedly.

3It is not possible to turn off all join operators or turn off all scan operators, hence 49
hints instead of 64.
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Figure 5: Performance Improvements measured on four different workloads: CEB, JOB, Stack, and DSB. Goal is to achieve lower

total latency with less offline exploration time. Offline exploration times chosen on the X-axis correspond to [1/4, 1/2, 1, 2, 4] ×
default workload time in each workload.
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Figure 6: Total Latency vs. Offline Explo-

ration Time on CEB workload. LimeQO
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Figure 8: Greedy vs. LimeQO after we add

a ETL query into the Stack Workload.

Note that the default workload time in-

creased from 1.46 hours to 1.62 hours.

• QO-Advisor: the QO-Advisor technique [82] adapted to Post-
greSQL. Instead of using a contextual bandit model that learn
from the estimated cost to recommend single-rule flips, we select
the unexplored entry with the lowest optimizer cost (this is the
best action that QO-Advisor’s contextual bandit could possibly
pick, since QO-Advisor’s multi-armed bandit operated over the
optimizer’s cost model).
• Bao-Cache: the technique of Bao [38] adapted to offline explo-
ration. The TCNN is used to select unobserved entries to explore.
We cache the results and select the best observed hint for each
query (thus guaranteeing that there are no query regressions).
• Random: explore the workload matrix by randomly selecting
unobserved entries.
• Greedy: explore the matrix by selecting the longest running
queries as described in Section 4.2, then randomly picking the
unobserved hints.
• LimeQO: use MC to explore the matrix as described in Sec-
tion 4.3.1. We set 𝑟 = 5, 𝜆 = 0.2 and 𝑡 = 50 in Algorithm 2.
We implemented it using standard linear algebra libraries, specif-
ically NumPy’s numpy.linalg which uses LAPACK [2] at core.
• LimeQO+: use TCNN Embedding as described in Section 4.3.2.
For the TCNN component, we use the same TCNN architecture
as [38], except that we add a dropout layer [62] with 𝑝 = 0.3
between each tree convolution layer, which universally improved

results. For the embedding layer, we set 𝑟 = 5. Training is per-
formed with Adam [29] using a batch size of 32, and is run for
100 epochs or convergence (defined as a decrease in training loss
of less than 1% over 10 epochs) is reached.

5.1 Performance Improvements

How much can LimeQO and LimeQO+ improve latency? Fig-
ure 5 shows the total workload time across different workloads
after a certain amount of offline exploration time.

On the CEB workload, after 1.5 hours (50% of the default work-
load time), LimeQO brings the latency down by 50%, from 2.94 hours
to 1.45 hours — within 15% of the optimal reduction (65%). LimeQO+
achieves a 60% reduction, lowering the time from 2.94 hours to 1.2
hours, just 5% above the optimal. The relatively poor performance
of Random and Greedy indicates that these improvements are
not due to chance. For the JOB workload, after one default work-
load time, LimeQO and LimeQO+ reduce processing time to 100s (a
45% reduction) and 80s (a 56% reduction) respectively, whereas the
optimal is 68s (a 62% reduction). Figure ?? further illustrates that
LimeQO and LimeQO+ explored fewer queries over the offline ex-
ploration period. This suggests that our techniques prioritize filling
in the “more important" entries in the matrix rather than perform-
ing exhaustive search. On the Stack workload, after one default
workload time, LimeQO and LimeQO+ reduce latency by 11% and
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17% respectively, which is close to the optimal possible improve-
ment of 25%. For the CEB workload, after one default workload
time, LimeQO and LimeQO+ reduce latency to 3.25 hours (a 32%
reduction), and 3.26 hours (a 31% reduction) respectively, whereas
the optimal latency is 2.74 hours (a 42% reduction).

We observe that, across differentworkloads, LimeQO+ can achieve
better results than LimeQO in many cases, but this comes at the
cost of additional overhead (further investigated in Section 5.2).
Both LimeQO and LimeQO+ outperforms Random and Greedy
techniques at the start (0 to 1 × default workload time), although
the four techniques converge after the 4 × default workload time.
Compared to QO-Advisor and Bao-Cache, our techniques consis-
tently demonstrated better performance across various exploration
durations and workload settings, highlighting the importance of
considering the entire workload at once when making exploration
decisions.

Performance over time. We further analyze the CEB workload
in Figure 6, where we show how different techniques’ workload
time changes with time spent on offline optimization.

Initially, LimeQO reduces workload latency more rapidly than
LimeQO+. However, after approximately 20 minutes of exploration,
LimeQO+ surpasses LimeQO, achieving a lower total latency. This
shift can be attributed to LimeQO+’s deep learning approach, which
improves its performance as it receives more training data.

Does Greedy always work well? The reader may notice that,
in Figure 5’s Stack workload results, Greedy and LimeQO both
achieve around 1.3 hours at 1× the default workload time and ap-
proximately 1.24 hours at 2× the default workload time. While
these results suggest that Greedy and LimeQO have comparable
performance in this instance, this does not imply that the Greedy
approach is universally effective. The Greedy method operates
under the assumption that there is a correlation in the workload,
such that longer-running queries have greater potential for per-
formance improvement. However, this assumption may not hold
true in real-world workloads. In fact, the performance of Greedy
can significantly degrade in certain scenarios. To illustrate this,
we conduct an experiment where we add a simple ETL query to
the Stack workload. This ETL query loads the joined results of the
question and user tables from the Stack database into a CSV file,
which takes 576.5 seconds to execute. It is obvious that changing
query optimizer hints will not reduce the runtime of this ETL query.

Figure 8 shows that from 0 to 3.25 hours (2x default workload
time), LimeQO is consistently better than Greedy. This is because
while Greedy persistently explore the long ETL query at each
exploration step – because it is one of the longest-running queries
in the workload, LimeQO utilizes the predictive model to recognize
that the potential gain from optimizing this query is low. As a result,
LimeQO intelligently ignores the ETL query and explore other
queries where performance improvements are more attainable. This
highlights the advantage of incorporating predictive modeling into
the exploration strategy.

5.2 Overhead

Figure 7 shows the cumulative overhead time cost for LimeQO and
LimeQO+ during offline exploration time on the CEB workload. In

this context, the offline exploration time is the time DBMS spends
on executing the queries. The overhead for LimeQO is the compu-
tational cost of matrix completion, while for LimeQO+, it includes
both training the model on observed plan trees and inference on
unobserved plan trees at each exploration step.

After exploring for 6 hours, LimeQO incurs a total overhead
of just 10 seconds, whereas LimeQO+ experiences an overhead of
approximately 3600 seconds (60 minutes). This indicates that linear
methods are at least 360x more efficient in terms of computational
resource usage.

We also experiment with LimeQO+ on an NVIDIA A100 GPU,
tuning training and inferencing batch size to 512 for optimal perfor-
mance. Even with this powerful GPU, LimeQO+ still requires 660
seconds (11 minutes) that add to overall query processing overhead.

In conclusion, LimeQO+ requires significantly more resources
than LimeQO. Additionally, it’s important to note that the imple-
mentation of LimeQO+ is more complex and has a large software
footprint (e.g., requiring PyTorch [49]) as well as feature extraction
steps. On the other hand, LimeQO’s implementation only requires
near-universal linear algebra routines and straightforward filling
of the observed latency time.

5.3 Workload Shift

Practitioners may also concerned LimeQO’s ability to handle new
queries, particularly in the event of a workload shift. A key question
is whether LimeQO remains robust under these conditions.

In Figure 9, we evaluate the performance of LimeQO andGreedy
under a workload shift using the CEB workload. From 0 to 2 hours,
we process 70% of the full set of queries (randomly chosen). At the
2-hour mark, we introduce the remaining 30% of queries.

We observe that LimeQO reduces total latency to 0.9 hours (a
55% gain) while Greedy only reduces to 1.2 hours (a 40% gain).
Additionally, LimeQO reaches the same performance level as when
100% of the queries were available from the start after only 0.5

hours of processing the new queries. In contrast, Greedy takes
longer than 4 hours to reach the performance level seen when all
queries are available from the start.

This demonstrates that LimeQO adapts well to workload shifts
while Greedy does not. It shows the advantages of LimeQO over
simpler techniques, highlighting its robustness in dynamic envi-
ronment.

5.4 Data Shift

Another important question we seek to answer is LimeQO’s robust-
ness under data drift. To evaluate this, we utilized two versions of
the Stack dataset [38]: one from 2017 and another from 2019.

First, we analyze the similarities and differences between the
two versions: the total default runtime increased from 1.16 hours to
1.46 hours, while the optimal runtime increased from 0.9 hours to
1.09 hours. Additionally, we examine whether the best hints for the
workload have changed and find that 79% of the workload queries
maintain the same best hints. We further evaluated incremental
updates using timestamp information, with intervals ranging from
1 day to 1 week, 1 month, and 1 year. As shown in Fig 10, updates
with 1-day intervals result in negligible changes to the optimal
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hints. After 1 month, 1% of queries changed their optimal hints, 5%
after 6 months, 10% after 1 year, and 21% after two years.

Applying the best hints from the 2017 dataset to the 2019 dataset
reduced the total runtime from 1.46 hours to 1.26 hours, represent-
ing a 14% reduction compared to the optimal gain of 25%. In other
words, even though the hints computed for the 2017 dataset are no
longer optimal in 2019, the old hints still improve latency by 14%
compared to the default optimizer.

Next, we simulate a complete data shift of two years after 4 hours
of exploration. Given that 21% of workload queries changed the
optimal hints after a 2 year data update - representing the maximum
percentage observed in Fig 10 — this experiment reflects the worst-
case impact of data shift. Specifically, we first explore the 2017 Stack

dataset for 4 hours. Then, at the 4-hour mark, we entirely shift to the
2019 dataset. We begin exploring the new dataset using the current
best hints derived from the previous dataset, and then continue
with the same exploration process as described in Section 4.3.1.
Figure 11 shows the total workload time after spending 0.25×, 0.5×,
1×, 2×, and 4× the default workload time (1.5 hours) on the 2019
new dataset. LimeQO is able to recover from the sudden data shift
in thirty minutes, matching the performance of LimeQO when
starting on the 2019 data.

5.5 Ablation Study

To better understand LimeQO and LimeQO+, we analyze: (1) the
role of the TCNN component in LimeQO+; (2) the validity of the
low-rank assumption; (3) the impact of rank selection on the per-
formance; (4) the benefits of our censored techniques; and (5) our
choice of ALS algorithm for matrix completion.

5.5.1 LimeQO+ vs. TCNN. As described in Section 4.3.2, LimeQO+
combines linear and neural methods. To evaluate the effectiveness
of this integration, we compare the performance of the pure TCNN
model with LimeQO+, noting that the TCNN component in both
models is identical. Figure 12 shows that after 0.75 hours of optimiza-
tion, LimeQO+ reduces latency by 56% from 2.9 hours to 1.3 hours,
while TCNN only brings it down to 1.6 hours (a 48% reduction).
It further shows that LimeQO+ consistently outperforms TCNN
throughout the entire offline exploration process. This improvement
can be attributed to the newly introduced features according to the
low-rank property of the workload matrix, leading to more accurate
predictions. We also compare the overhead time between TCNN
and LimeQO+ in Figure 13. LimeQO+ spend about 20 additional
minutes of overhead after exploring 6 hours. This confirms that the
embedding layers in LimeQO+ improve performance significantly
without introducing prohibitive overhead.

5.5.2 Low-rank Structure. A key assumption of LimeQO is that
the workload matrix W has a low rank, without which matrix
completion may fail to predict unobserved plans accurately [8]. To
validate this, we analyze the rank of the workload matrix for the
CEB workload using singular value decomposition (SVD). Figure 14
presents the singular values of the completeW matrix, compared
with those of a randomly generated matrix of the same shape. The
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performance with and without censored techniques.

workloadmatrix exhibits a few large singular values andmany small
ones, while the randommatrix shows uniformly distributed singular
values of similar magnitude. This observation confirms that the
workload matrix can be well-approximated by a low-rank matrix,
thus explaining why the ALS algorithm is effective in our scenario.
For example, based on the singular values shown in Figure 14, we
find that 𝑟 < 10 is a reasonable choice, as it captures most of the
significant information while discarding smaller, less impactful
singular values.

5.5.3 Rank. Both LimeQO and LimeQO+ require an administrator
to specify the rank 𝑟 . To evaluate how sensitive the models are
to this parameter, we experimented across a range of 𝑟 . Figure 15
shows that LimeQO requires a rank greater than 2 to perform ef-
fectively, as ranks below this threshold fail to capture sufficient
structure in the workload matrix. However, once the rank exceed
two, the performance of LimeQO stabilizes and shows little varia-
tion. On the other hand, LimeQO+ demonstrates greater stability
across different rank values, as it incorporates additional features
from TCNN, making it less sensitive to changes in 𝑟 . This obser-
vation aligns with the findings in Section 5.5.2 on singular values.
Ultimately, we set 𝑟 = 5, which offers a good balance between
accurately approximating the workload matrix and maintaining
computational efficiency.

5.5.4 Censored Techniques. We introduce censored techniques in
both LimeQO and LimeQO+ to handle the time-out observations.
Here, we evaluate the impact of these techniques on performance.
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In LimeQO, removing the censored technique is taking out lines 5
and 10 in Algorithm 2, thereby ignoring the timeout matrix. In
LimeQO+, it entails training the model solely on non-censored data
and relying the standard MSE loss function, which does not account
for timeouts. Figure 16 shows that applying censored techniques to
LimeQO results in less variance and improved performance after 2
hours of exploration. Similarly, LimeQO+ exhibits decreased vari-
ance and better performance. Specifically, LimeQO+ with censored
technique reduces the total 3-hour workload to 1.5 hours after only
0.5 hours of exploration, whereas the version without censored
technique took 0.9 hours to achieve the same reduction - a 1.8x
longer exploration time. These results highlight the effectiveness
of censored techniques in both methods, enabling them to achieve
faster convergence and more consistent performance.

5.5.5 Comparisons of Matrix Completion Techniques. In this sec-
tion, we explore three different matrix completion techniques and
compare their accuracy and time overhead:

• Nuclear Norm Minimization (NUC) [9]: NUC recovers a low-
rankmatrix byminimizing the nuclear norm of thematrix subject
to the constraints of observed entries, effectively leveraging the
low rank property. While this approach can produce highly accu-
rate results, it often requires substantial computational resources,
especially for large datasets.
• Singular Value Thresholding (SVT) [7]: SVT uses singular
value decomposition (SVD) and applies a threshold to the singu-
lar values to enforce low-rank approximation. However, it may
struggle with noisy data or sparse observations.
• Alternating Least Squares (ALS) [21]: ALS iteratively opti-
mizes matrix factors, makes it highly scalability. ALS is particu-
larly effective for large-scale problems, as it can handle various
forms of missing data and is less sensitive to initialization com-
pared to other methods.

Figure 17 shows that while NUC provides good accuracy, it incurs a
significant computational cost, taking over 0.5 seconds on the small
JOB workload matrix (131 × 49). This overhead increases further
for larger matrices. SVT, on the other hand, fails to handle sparse
matrices effectively; its performance at 𝑝 = 0.1 is absent because
it could not solve the matrix under such sparsity. In contrast, ALS
balances well between accuracy and efficiency, yielding satisfactory
results with the least overhead across various levels of sparsity4.

4We do not show 𝑝 > 0.3 because we never observed a higher 𝑝 in our experiments.
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Therefore, we choose ALS as our matrix completion technique in
Section 4.3.1.

5.6 Comparison with BayesQO

Our work shares similarities with BayesQO [67], a concurrent
approach targeting offline query optimization. However, while
BayesQO optimizes queries individually, our framework is designed
to optimize an entire query workload simultaneously. To compare
the two approaches, we conducted additional experiments using the
JOB workload. Our method followed the approach described in Sec-
tion 4.3.1. For BayesQO, each query in the workload was allocated
a fixed optimization time of three seconds, after which the total la-
tency was calculated. As shown in Figure 18, our approach achieves
significant progress in optimizing the workload, whereas BayesQO
barely makes progress on any single query. When optimizing an
entire workload, it is advantageous to allocate exploration time dy-
namically to the “right” query, as opposed to allocating exploration
time evenly among all queries.

6 CONCLUSIONS AND FUTUREWORK

The question of how to effectively achieve the benefits of learned
query optimization, without suffering performance regressions or
running extensive model training, has been of strong interest to the
database community. Building upon the idea of offline optimization,
and using a method based on specifying optimizer hints to modify
query optimizer behavior from an external system – this paper
develops LimeQO: a framework for zero-regression, offline learned
query optimization, without requiring extensive training, knowing
specific plan features, or making assumptions about the underlying
DBMS. Our methods are inspired by collaborative filtering, and are
simple and low-overhead. Nonetheless, our experiments validate
that, with appropriate active learning strategies, we can achieve
nearly as much benefit as complex deep learning approaches. We
also introduced LimeQO+, a more computationally expensive vari-
ant that integrates neural network techniques for faster conver-
gence, but at the cost of higher overhead. Overall, LimeQO provides
a practical solution for learned query optimization, ensuring effi-
cient offline exploration without regressions and offering flexibility
across different query optimization environments.

Future Work. Our existing framework relies on steering an
optimizer through coarse-grained hints. In the future, we plan to
investigate whether optimizers with finer-grained hints can benefit
— for instance, the optimizer for the open-source Apache Presto [58]
distributed SQL engine. Taking this one step further, we will explore

whether modern optimizer frameworks such as Apache Calcite [5],
used in many systems, could be extended to incorporate variations
of our offline exploration model. We also plan to investigate tech-
niques for online exploration over the space of hints and plans
leveraging the low-rank structure, complementing the offline ex-
ploration of our current approach.

Additionally, since the query optimizer is PostgreSQL is less
sophisticated than those found in commercial systems, we plan to
extend our technique to systems like SQL Server and Oracle. On
one hand, these commercial systems have more powerful baseline
optimizers, so improvements may be harder to find. On the other
hand, these commercial systems also provide a wider variety of
hints, potentially creating more opportunities for optimization.

Evaluating our technique in the presense of data drift is also an
important future direction. In this work, we looked at the impact
of large data changes, but future work could evaluate performance
on continuous data updates.

Finally, while we believe our incorporation of censored obser-
vations into ALS and TCNNs has been validated experimentally,
future work could conduct a formal or theoretical analysis of cen-
sored techniques.
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